K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

\(a,n+6⋮n\)

\(\Rightarrow6⋮n\)

\(\Rightarrow n\inƯ\left(6\right)\)

\(\Rightarrow n\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

\(b,n+9⋮n+1\)

\(\Rightarrow n+1+8⋮n+1\)

\(\Rightarrow8⋮n+1\)

\(\Rightarrow n+1\inƯ\left(8\right)\)

\(\Rightarrow n+1\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)

\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)

\(c,n-5⋮n+1\)

\(\Rightarrow n+1-6⋮n+1\)

\(\Rightarrow6⋮n+1\)

\(\Rightarrow n+1\inƯ\left(6\right)\)

\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)

\(\Rightarrow n\in\left\{-2;0;-3;0;-4;2;-7;5\right\}\)

\(d,2n+7⋮n-2\)

\(\Rightarrow2n-4+11⋮n-2\)

\(\Rightarrow2\left(n-2\right)+11⋮n-2\)

\(\Rightarrow11⋮n-2\)

\(\Rightarrow n-2\inƯ\left(11\right)\)

\(\Rightarrow n-2\in\left\{-1;1;-11;11\right\}\)

\(\Rightarrow n\in\left\{1;3;-9;13\right\}\)

25 tháng 8 2017

a25/27 15/16

25 tháng 8 2017

1)      a3 + b3 + c3 – 3abc

Ta sẽ thêm và bớt  3a2b +3ab2  sau đó nhóm để phân tích tiếp

           a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)

                            = (a + b)3 +c3 – 3ab(a + b + c)

                            = (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]

                            = (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]

                            = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)

2)      x– 1     

Ta sẽ thêm và bớt x sau đó dùng phương pháp nhóm: 

           x5  – 1   = x5 – x + x – 1

                        = (x5 – x) + (x – 1)

                        = x(x4 – 1) + ( x – 1)

                       = x(x2 – 1)(x2 + 1) + (x - 1)

                       = x(x +1)(x – 1)(x2 + 1) + (  x – 1)

                       = (x – 1)[x(x + 1)(x2 + 1) + 1].

3)      4x+ 81 

Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:

          4x+ 81  =  4x + 36x2 + 81 – 36x2

                        = ( 2x+ 9)2 – (6x)2

                        =  (2x2 + 9 – 6x)(2x2 + 9 + 6x)

26 tháng 7 2020

Cho:
m-n+p-q \vdots 3
2m+2n+2p-2q \vdots 4
-m-3n+p-3q \vdots -6
6m+8n+2p-6q \vdots 5
Hãy tính:
\frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=?
A.\frac{1}{75000}
B.\frac{1}{75076}
C.\frac{1}{80000}
D.\frac{1}{85076}

HQ
Hà Quang Minh
Giáo viên
9 tháng 10 2023

a) Theo đề bài: 84 chia hết cho a và 180 chia hết cho a nên a là ƯC(84, 180) và a > 6.

Ta có: 84 = 22.3.7

180 = 22. 32.5

ƯCLN(84, 180) = 22. 3 = 12

=> a \( \in \) ƯC(84, 180) = Ư(12) = {1; 2; 3; 4; 6; 12}

Mà a > 6.

=> a = 12.

Vậy tập hợp A = {12}

b) Vì b chia hết cho 12, b chia hết cho 15, b chia hết cho 18 nên b là BC(12, 15, 18) và 0 < b <300

Ta có: \(12 = 2^2. 3;  15 = 3.5;  18 = 2.3^2\)

\(\Rightarrow BCNN(12, 15, 18) = 2^2 . 3^2.5 = 180\)

=> b\( \in \) BC(12, 15, 18) = B(180) = {0; 180; 360;...}

Mà 0 < b < 300

=> b = 180

Vậy tập hợp B = {180}

18 tháng 3 2017

\(A=mn\left(m^2-n^2\right)\) (1)

\(A=mn\left(n-m\right)\left(n+m\right)\)(1)

1.- với A dạng (1) ta có (m^2 -n^2) luôn chia hết cho 3 { số chính phương luôn có dạng 3k hoặc 3k+1}

2.-Với A dạng (2)

2.1- nếu n hoặc m chẵn hiển nhiên A chia hết cho 2

2.1- nếu n và m lẻ thì (n+m) chia hết cho 2

Vậy: A chia hết cho 2&3 {2&3 ntố cùng nhau) => A chia hết cho 6 => dpcm

19 tháng 3 2017

mơn ạ yeu

NV
8 tháng 5 2021

\(11\equiv1\left(mod5\right)\Rightarrow11^n\equiv1^n\left(mod5\right)\Rightarrow11^n-1⋮5\)

Tương tự: \(7^n\equiv2^n\left(mod5\right)\Rightarrow7^n-2^n⋮5\)

\(\Rightarrow A⋮5\)

\(11^n\equiv2^n\left(mod3\right)\Rightarrow11^n-2^n⋮3\)

\(7^n\equiv1^n\left(mod3\right)\Rightarrow7^n-1⋮3\)

\(\Rightarrow A⋮3\)

Mà 3 và 5 nguyên tố cùng nhau \(\Rightarrow A⋮\left(3.5\right)\) hay \(A⋮15\)

8 tháng 5 2021

Cam on anh "3"

19 tháng 1 2016

2n - 7 chia hết cho n + 4

=> 2n + 8 - 15 chia hết cho n + 4

=> 2.(n + 4) - 15 chia hết cho n + 4

=> 15 chia hết cho n + 4

=> n + 4 \(\in\)Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}

=> n \(\in\){-19; -9; -8; -5; -3; -1; 1; 11}.

19 tháng 1 2016

{-19;-9;-8;-5;-3;-1;1;11}

10 tháng 8 2017

1/ \(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(\left(n,3\right)=1\) nên \(n⋮̸3\) nên n chia 3 dư 1 hoặc dư 2

- Nếu n chia 3 dư 1 thì \(\left(n-1\right)⋮3\Rightarrow A⋮3\)

- Nếu n chia 3 dư 2 thì \(\left(n+1\right)⋮3\Rightarrow A⋮3\)

Như vậy \(A⋮3\)

Lại có n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\) (1)

Mặt khác n lẻ \(\Rightarrow\left(n^2+1\right)⋮2\) (2)

Từ (1) và (2) suy ra \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\right]⋮16\)

Hay \(A⋮16\)

Ta có \(A⋮3;A⋮16\), mà (3;16) = 1 nên \(A⋮48\)

2/ \(B=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

- Chứng minh \(B⋮16\) tương tự như ở câu 1

- Ta sẽ đi chứng minh \(B⋮5\)

+ Nếu n chia 5 dư 1 thì \(\left(n-1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 4 thì \(\left(n+1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 2 hoặc dư 3 thì \(\left(n^2+1\right)⋮5\Rightarrow B⋮5\)

Do đó \(B⋮5\)

Kết hợp với \(B⋮16\) ở trên suy ra \(B⋮80\)

10 tháng 8 2017

4. \(D=n^8-n^4=n^4\left(n^4-1\right)=n^3\left(n-1\right).n.\left(n+1\right)\left(n^2+1\right)\)

- Dễ thấy n-1, n, n+1 là 3 số nguyên liên tiếp nên \(D⋮3\)

- Chứng minh \(D⋮5\)

+ Nếu \(n⋮5\) thì \(D⋮5\)

+ Nếu n chia 5 dư 1;2;3;4 thì ... (tương tự câu 2)

- Chứng minh \(D⋮16\)

+ Nếu n chẵn thì \(n^4⋮16\Rightarrow D⋮16\)

+ Nếu n lẻ, cmtt câu 1

Ta có (16;3;5) = 1 nên \(D⋮\left(16.3.5\right)=240\)

3. \(C=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)

\(=n^2\left(n^2-1\right)\left(n^2+2\right)=n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)\)

- Chứng minh \(C⋮8\)

+ Nếu n chẵn thì \(n^2⋮4\)\(\left(n^2+2\right)⋮2\) \(\Rightarrow\left[n^2\left(n+2\right)\right]⋮8\) nên \(C⋮8\)

+ Nếu n lẻ thì n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\Rightarrow C⋮8\)

- Chứng minh \(C⋮9\)

+ Dễ thấy \(\left[n\left(n-1\right)\left(n+1\right)\right]⋮3\) (1)

+ Ta sẽ chứng minh \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu \(n⋮3\) thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu n chia 3 dư 1 hoặc 2 thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Vậy \(\left[n\left(n^2+2\right)\right]⋮3,\forall n\in Z\) (2)

Từ (1) và (2) suy ra \(\left[n\left(n-1\right)\left(n+1\right)\right].\left[n\left(n^2+2\right)\right]⋮\left(3.3\right)=9\)

Hay \(C⋮9\)

Ta có \(C⋮8\)\(C⋮9\), mà (8;9) = 1 nên \(C⋮72\)