tìm 1 phân số biết rằng nếu ta chia mẫu số phân số đó cho 3, giữ nguyên tử số giá trị của phân số tăng lên 14/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi phân số cần tìm là $\frac{a}{b}$. Theo bài ra ta có:
$\frac{a+b}{b}=8\times \frac{a}{b}$
$\frac{a}{b}+1=8\times \frac{a}{b}$
$1=8\times \frac{a}{b}-\frac{a}{b}=7\times \frac{a}{b}$
$\frac{a}{b}=\frac{1}{7}$
$\Rightarrow b=7; a=1$
Gọi phân số cần tìm là \(\frac{a}{b}\)
Theo bài ra ta có: \(\frac{a+b}{b}=9\times\frac{a}{b}=\frac{9a}{b}\)
\(\Rightarrow\frac{a+b}{b}-\frac{9a}{b}=0\Rightarrow\frac{a+b-9a}{b}=0\)
\(\Rightarrow\frac{-8a+b}{b}=0\Rightarrow\frac{-8a}{b}+1=0\)
\(\Rightarrow\frac{-8a}{b}=-1\Rightarrow8a=b\Rightarrow\frac{a}{b}=\frac{1}{8}\)
Vậy phân số tối giản cần tìm là \(\frac{1}{8}\)
Phân số có dạng là: \(\frac{a}{b}\)
Theo bài ra ta có: \(\frac{a+b}{b}=\frac{9.a}{b}\)
<=> \(\frac{a}{b}+\frac{b}{b}=9.\frac{a}{b}\) <=> \(\frac{a}{b}+1=9.\frac{a}{b}\)<=> \(1=8.\frac{a}{b}\)
=> \(\frac{a}{b}=\frac{1}{8}\)
Phân số cần tìm là: \(\frac{1}{8}\)