cho biểu thức A= \(\left(1-\frac{2\sqrt{a}-2}{a-1}\right):\left(\frac{1}{1+\sqrt{a}}-\frac{a}{1+a\sqrt{a}}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:....
\(A=\left(\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)
\(A=\left(a+2\sqrt{a}+1\right)\frac{1}{\left(1+\sqrt{a}\right)^2}=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
\(B=\frac{2}{\sqrt{ab}}:\left(\frac{\sqrt{b}-\sqrt{a}}{\sqrt{ab}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(B=\frac{2}{\sqrt{ab}}.\frac{\sqrt{ab}^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=\frac{2\sqrt{ab}-a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(B=\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)
a/ĐK: \(a\ge0;a\ne1\)
Ta có: P\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}:\left(\frac{1}{\sqrt{a}+1}+\frac{1}{\sqrt{a}-1}\right)=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}-1+\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=\frac{\sqrt{a}+1}{\sqrt{a}-1}\times\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{2\sqrt{a}}=\frac{\left(\sqrt{a}+1\right)^2}{2\sqrt{a}}\)
a/ rút gọn A
b/tìm a để giá trị của A đạt GTLN
\(A=\left(1-\frac{2\sqrt{a}-2}{a-1}\right):\left(\frac{1}{1+\sqrt{a}}-\frac{a}{1+a\sqrt{a}}\right)\)
\(=\left(\frac{a-1-\left(2\sqrt{a}-2\right)}{a-1}\right):\)\(\left(\frac{1}{\sqrt{a}+1}-\frac{a}{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}\right)\)
\(=\left(\frac{a-1-2\sqrt{a}-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}\right):\)\(\left(\frac{a-\sqrt{a}+1-a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{\left(a-2\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}:\frac{-\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=-\frac{\left(\sqrt{a}-1\right)^2\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}=-\left(\sqrt{a}-1\right)=1-\sqrt{a}\)