K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

a) \(a^3+b^3\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(=6\left(a^2+2ab+b^2-3ab\right)\)

\(=6\left[\left(a+b\right)^2-3ab\right]\)

\(=6\left[6^2-3.8\right]\)

\(=6\left[36-24\right]=6.12=72\)

29 tháng 7 2019

b) \(a^2+b^2\)

\(=a^2+2ab+b^2-2ab\)

\(=\left(a+b\right)^2-2.8\)

\(=6^2-16=36-16=20\)

10 tháng 6 2019

#)Giải :

\(a^2+b^2\le1+ab\)

\(\Leftrightarrow a^2-ab+b^2\le1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)

\(\Leftrightarrow a^3+b^3\le a+b\)

\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)

\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)

\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)

\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)

\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))

Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)

P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )

15 tháng 10 2018

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

17 tháng 10 2018

vãi cả loz sao lại sai ?