\(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2\)
Phân tích thành nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a3+2a2-13a+10
Ta thấy a=1;a=2 là nghiệm của đa thức nên:
=(a-2)(a-1)(a+5)
b)(a2+4b2-5)2-16(ab+1)2
=(a2+4b2-5+4ab+4)(a2+4b2-5-4ab-4)
=[(a+2b)2-1][(a-2b)2-9]
=(a+2b+1)(a+2b-1)(a-2b+3)(a-2b-3)
\(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)
\(=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)
\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]\)
\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\)
\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-3^2\right].\left[\left(a+b\right)^2-1\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
Tham khảo nhé~
1) \(a^3+2a^2-13a+10=a^3-a^2+3a^2-3a-10a+10=\)
\(=a^2\left(a-1\right)+3a\left(a-1\right)-10\left(a-1\right)=\left(a-1\right)\left(a^2+3a-10\right)\)
\(=\left(a-1\right)\left(a^2-2a+5a-10\right)=\left(a-1\right)\left[a\left(a-2\right)+5\left(a-2\right)\right]=\)
\(=\left(a-1\right)\left(a-2\right)\left(a+5\right)\)
b) \(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2=\left(a^2+4b^2-5+4ab+4\right)\left(a^2+4b^2-5-4ab-4\right)\)
\(=\left(a^2+4ab+4b^2-1\right)\left(a^2-4ab+4b^2-9\right)=\left[\left(a+2b\right)^2-1\right]\left[\left(a-2b\right)^2-9\right]=\)
\(=\left(a+2b+1\right)\left(a+2b-1\right)\left(a-2b+3\right)\left(a-2b-3\right)\)
2) \(6a-5b=1\Rightarrow5b=6a-1\Rightarrow25b^2=36a^2-12a+1\)
\(\Rightarrow4a^2+25b^2=40a^2-12a+1=40\left(a^2-2\cdot a\cdot\frac{3}{20}+\left(\frac{3}{20}\right)^2\right)+1-\frac{9}{10}\)
\(=40\left(a-\frac{3}{20}\right)^2+\frac{1}{10}\)
Vậy GTNN của \(4a^2+25b^2\)= 1/10. Xảy ra khi a = 3/20 và b = -1/50.
a) \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)
\(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)
\(=\left[\left(b+c\right)^2-a^2\right]\left[a^2-\left(b-c\right)^2\right]\)
\(=\left(b+c+a\right)\left(b+c-a\right)\left(a+b-c\right)\left(a-b+c\right)\)
b) \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)
\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)
c) \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left(a+b+1\right)\left(a+b-1\right)\left(a-b+3\right)\left(a-b-3\right)\)
d) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18+4x^2+3x\right)\left(4x^2-3x-18-4x^2-3x\right)\)
\(=\left(8x^2-18\right)\left(-6x-18\right)\)
\(=\left[2\left(4x^2-9\right)\right]\left[-6\left(x+3\right)\right]\)
\(=12\left(2x+3\right)\left(2x-3\right)\left(x+3\right)\)
a)
(x-y+5)2-2.(x-y+5)+1
=(x-y+5-1)2
=(x-y+4)2
b)
(x2+4y2-5)2-16.(x2.y2+2xy+1)
=(x2+4y2-5)2-[4.(xy+1)]2
=(x2+4y2-5-4xy-4)(x2+4y2-5+4xy+4)
=(x2+4y2-4xy-9)(x2+4y2+4xy-1)
=[(x-2y)2-9][(x+2y)2-1]
=(x-2y-3)(x-2y+3)(x+2y-1)(x+2y+1)
=(x2+x-3x-3)((x-2y+3)(x+2y-1)(x+1)2
=[x(x+1)-3(x+1)](x-2y+3)(x+2y-1)(x+1)2
=(x+1)(x-3)(x-2y+3)(x+2y-1)(x+1)2
(x - 5)2 - 4(x - 3)2 + 2(2x - 1)(x - 5) + (2x - 1)2
= [(x - 5)2 + 2(2x - 1)(x - 5) + (2x - 1)2) - [2(x - 3)]2
= (x - 5 + 2x - 1)2 - (2x - 6)2
= (3x - 6)2 - (2x - 6)2
= (3x - 6 - 2x + 6)(3x - 6 + 2x - 6) = x(5x - 12)
( x - 5 )2 - 4( x - 3 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2
= [ ( x - 5 )2 + 2( 2x - 1 )( x - 5 ) + ( 2x - 1 )2 ] - 22( x - 3 )2
= ( x - 5 + 2x - 1 )2 - ( 2x - 6 )2
= ( 3x - 6 )2 - ( 2x - 6 )2
= ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 )
= x( 5x - 12 )
a) \(100x^2-\left(x^2+25\right)^2=\left(10x\right)^2-\left(x^2+25\right)^2=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)
\(=-\left(x-5\right)^2\left(x+5\right)^2\)
b) \(\left(x-y+5\right)^2-2\left(x-y+5\right)+1=\left(x-y+5-1\right)^2=\left(x-y+4\right)^2\)
c) \(\left(x^2+4y^2-5\right)^2-16\left(x^2+y^2+2xy+1\right)\)
Có lẽ bạn ghi sai đề rồi nha.
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)
\(=\left[a\left(x+y\right)+b\left(x+y\right)\right]\left[a\left(x-y\right)-b\left(x-y\right)\right]\)
\(=\left(a+b\right)\left(a-b\right)\left(x+y\right)\left(x-y\right)\)
\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)
\(=\left[a^2+b^2-5+2ab+4\right]\left[a^2+b^2-5-2ab-4\right]\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)
a)
(ax+by)2 - (ay+bx)2
=(ax+by-ay-bx)(ax+by+ay+bx)
=[ a(x-y) -b(x-y)][ a(x+y) + b(x+y)]
=(a-b)(x-y)(a+b)(x+y)
b)(a2+b2-5)2 - 4(ab+2)2
=(a2+b2-5-2ab-4)(a2+b2-5+2ab+4)
=[ (a-b)2 -9][ (a+b)2 -1]
=(a-b-3)(a-b+3)(a+b-1)(a+b+1)
\(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2\)
\(=\left(a^2+4b^2-5\right)^2-4^2\left(ab+1\right)^2\)
\(=\left(a^2+4b^2-5\right)^2-\left[4\left(ab+1\right)\right]^2\)
\(=\left(a^2+4b^2-5\right)^2-\left[4ab+4\right]^2\)
\(=\left(a^2+4b^2-5-4ab-4\right)\left(a^2+4b^2-5+4ab+4\right)\)
\(=\left(a^2+4b^2-4ab-9\right)\left(a^2+4b^2+4ab-1\right)\)
\(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2\)
= \(\left(a^2+4b^2-5\right)^2-\left[4\left(ab+1\right)\right]^2\)
= \(\left(a^2+4b^2-5\right)^2-\left(4ab+4\right)^2\)
= \(\left(a^2+4b^2-5-4ab-4\right)\left(a^2+4b^2-5+4ab+4\right)\)
= \(\left(a^2+4b^2-4ab-9\right)\left(a^2+4b^2+4ab-1\right)\)
= \(\left[\left(a-2b\right)^2-3^2\right]\left[\left(a+2b\right)^2-1^2\right]\)
= \(\left(a-2b-3\right)\left(a-2b+3\right)\left(a+2b-1\right)\left(a+2b+1\right)\)