Cho hai đa thức P(x) =2x3 - 2x + x2 - x3 + 3x + 2
Q(x) =4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1
a) Rút gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến
b) Tính P(x) + Q(x) ; P(x) - Q(x)
c) Tính P(-1) ; Q(2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: P(x)=x^3+x^2+x+2
Q(x)=-x^3+x^2-x+1
b: M(x)=P(x)+Q(x)
=x^3+x^2+x+2-x^3+x^2-x+1
=2x^2+3
N(x)=x^3+x^2+x+2+x^3-x^2+x-1
=2x^3+2x+1
c: M(x)=2x^2+3>=3>0 với mọi x
=>M(x) ko có nghiệm
a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)
b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)
\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)
c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)
\(\Rightarrow M\left(x\right)\) không có nghiệm
a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(=x^3+x^2+x+2\)
Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(=-x^3-4x^2-x+1\)
b: Ta có: M(x)=P(x)+Q(x)
\(=x^3+x^2+x+2-x^3-4x^2-x+1\)
\(=-3x^2+3\)
Ta có N(x)=P(x)-Q(x)
\(=x^3+x^2+x+2+x^3+4x^2+x-1\)
\(=2x^3+5x^2+2x+1\)
a: P(x)=x^3-x^2+x+2
Q(x)=-x^3+x^2-x+1
b: M(x)=P(x)+Q(x)=x^3-x^2+x+2-x^3+x^2-x+1=3
N(x)=P(x)-Q(x)
=x^3-x^2+x+2+x^3-x^2+x-1
=2x^3-2x^2+2x+1
c: M(x)=3
=>M(x) ko có nghiệm
a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm
a: \(P\left(x\right)=2x^3-x^3+x^2+3x-2x+2=x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^3-4x^2+5x^2+3x-4x+1=-x^3+x^2-x+1\)
b: M(x)=P(x)+Q(x)
\(=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)
N(x)=P(x)-Q(x)
\(=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)
c: Vì \(2x^2+3>0\forall x\)
nên M(x) vô nghiệm
a, \(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=-x^3+x^2-x+1\)
b, \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)
\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)
c, giả sử \(M\left(x\right)=2x^2+3=0\)( vô lí )
vì 2x^2 >= 0 ; 2x^2 + 3 > 0
Vậy giả sử là sai hay đa thức M(x) ko có nghiệm
\(a,P\left(x\right)=2x^3-x+x^2-x^3+3x+5\\ =\left(2x^3-x^3\right)+x^2+\left(-x+3x\right)+5\\ =x^3+x^2+2x+5\\ Q\left(x\right)=3x^3+4x^2+3x-4x^3-5x^2+10\\ =\left(3x^3-4x^3\right)+\left(4x^2-5x^2\right)+3x+10\\ =-x^3-x^2+3x+10\\ b,M\left(x\right)=P\left(x\right)+Q\left(x\right)=x^3+x^2+2x+5-x^3-x^2+3x+10\\ =\left(x^3-x^3\right)+\left(x^2-x^2\right)+\left(2x+3x\right)+\left(5+10\right)=5x+15\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)=x^3+x^2+2x+5-\left(-x^3-x^2+3x+10\right)\\ =x^3+x^2+2x+5+x^3+x^2-3x-10\\ =\left(x^3+x^3\right)+\left(x^2+x^2\right)+\left(2x-3x\right)+\left(5-10\right)\\ =2x^3+2x^2-x-5\)
`a,P(x)= 2x^3 -x+x^2 -x^3 +3x+5`
`= (2x^3 -x^3)+x^2+(-x+3x) +5`
`= x^3 +x^2 + 2x+5`
`Q(x)=3x^3 +4x^2+3x-4x^3-5x^2+10`
`= (3x^3-4x^3)+(4x^2-5x^2)+3x+10`
`= -x^3 -x^2+3x+10`
`b,M(x)=P(x)+Q(x)`
`->M(x)=(x^3 +x^2 + 2x+5)+(-x^3 -x^2+3x+10)`
`=x^3 +x^2 + 2x+5+(-x^3) -x^2+3x+10`
`=(x^3 -x^3)+(x^2 -x^2)+(2x+3x)+(5+10)`
`= 5x+15`
`N(x)=P(x)-Q(x)`
`->N(x)=(x^3 +x^2 + 2x+5)-(-x^3 -x^2+3x+10)`
`=x^3 +x^2 + 2x+5-x^3 +x^2-3x-10`
`=(x^3-x^3)+(x^2+x^2)+(2x-3x)+(5-10)`
`=2x^2 -x-5`
\(a.\)
\(P(x)=2x^3-2x+x^2-x^3+3x+2\)
\(\Rightarrow P(x)=(2x^3-x^3)+x^2+(-2x+3x)+2\)
\(=x^3+x^2+x+2\)
\(Q(x)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(\Rightarrow Q(x)=(3x^3-4x^3)+(-4x^2+5x^2)+(3x-4x)+1\)
\(=-x^3+x^2-x+1\)
b.
\(M(x)=P(x)+Q(x)\)
\(\Rightarrow M(x)=(x^3+x^2+x+2)+(-x^3+x^2-x+1)\)
\(=(x^3-x^3)+(x^2+x^2)+(x-x)+(2+1)\)
\(=2x^2+3\)
\(N(x)=P(x)-Q(x)\)
\(\Rightarrow N(x)=(x^3+x^2+x+2)-(-x^3+x^2-x+1)\)
\(=(x^3+x^3)+(x^2-x^2)+(x+x)+(2-1)\)
\(=2x^3+2x+1\)
c.Ta có ; \(M(x)=2x^3+3=0\)
\(\Leftrightarrow2x^3+3=0\)
\(\Rightarrow2x^3\) \(=-3\)
\(\Rightarrow x^3\) \(=\frac{-3}{2}\)
Vậy \(M(x)\)ko có nghiệm
học tốt , k cho mình nha
Nhớ kết bạn zới mình
a. Ta có:
f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
= 2x3 + 3x2 - 2x + 3 (0.5 điểm)
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
= 2x3 + 3x2 - 7x + 2 (0.5 điểm)
`a,`
`P(x)=2x^3-2x+x^2-x^3+3x+2`
`= (2x^3-x^3)+x^2+(-2x+3x)+2`
`= x^3+x^2+x+2`
`b,`
`H(x)+Q(x)=P(x)`
`-> H(x)=P(x)-Q(x)`
`-> H(x)=(x^3+x^2+x+2)-(x^3-x^2-x+1)`
`H(x)=x^3+x^2+x+2-x^3+x^2+x-1`
`= (x^3-x^3)+(x^2+x^2)+(x+x)+(2-1)`
`= 2x^2+2x+1`
Vậy, `H(x)=2x^2+2x+1.`
a.
\(P\left(x\right)=x^3+x^2+x+2\)
\(Q\left(x\right)=x^3-x^2-x+1\)
b.
\(H\left(x\right)+Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(\Rightarrow H\left(x\right)=x^3+x^2+x+2-\left(x^3-x^2-x+1\right)\)
\(\Rightarrow H\left(x\right)=2x^2+2x+1\)
a) P(x) = 2x3 - 2x + x2 - x3 + 3x + 2
P(x) = (2x3 - x3) + x2 + (-2x + 3x) + 2
P(x) = x3 + x2 + x + 2
Q(x) = 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1
Q(x) = (4x3 - 3x3) + (-5x2 + 4x2) + (3x - 4x) + 1
Q(x) = x3 + x2 - x + 1
b) P(x) + Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) + (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)
= 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1
= (2x3 - x3 + 4x3 - 3x3) + (-2x + 3x + 3x - 4x) + (x2 - 5x2 + 4x2) + (2 + 1)
= 2x3 + 3
P(x) - Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) - (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)
= 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 - 1
= (2x3 - x3 + 4x3 + 3x2) + (-2x + 3x - 3x + 4x) + (x2 + 5x2 - 4x2) + (2 - 1)
= 8x2 + 2x + 2x2 + 1
c) P(-1) = 2.(-1)3 - 2.(-1) + (-1)2 - (-1)3 + 3.(-1) + 2
= -2 - (-2) + 1 - (-1) - 3 + 2
= 1
Q(2) = 2.23 - 2.2 + 22 - 23 + 3.2 + 2
= 16 - 4 + 4 - 8 + 6 + 2
= 16
Đáp án:
Giải thích các bước giải:
a) P(x) = 2x³ - 3x + x⁵ - 4x³ + 4x - x⁵ + x² - 2
= -2x³ + x² + x - 2
Q(x) = x³ - 2x² + 3x + 1 + 2x²
= x³ + 3x + 1
Sắp xếp theo thứ tự giảm dần của biến là:
P(x) = -2x³ + x² + x - 2
Q(x) = x³ + 3x + 1
b) P(x) + Q(x) = -2x³ + x² + x - 2 + x³ + 3x + 1
= -x³ + x² + 4x - 1
P(x) - Q(x) = -2x³ + x² + x - 2 - x³ - 3x - 1
= -4x³ + x² - 2x - 3