K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2023

a: Bạn bổ sung đề đi bạn

b: thay x=-3 và y=0 vào (d), ta được:

\(-3\left(2m+1\right)-m+3=0\)

=>-6m-3-m+3=0

=>-7m=0

=>m=0

d: y=(2m+1)x-m+3

=2mx+x-m+3

=m(2x-1)+x+3

Tọa độ điểm cố định mà (1) luôn đi qua là:

\(\left\{{}\begin{matrix}2x-1=0\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3+\dfrac{1}{2}=\dfrac{7}{2}\end{matrix}\right.\)

21 tháng 11 2023

a: Thay x=0 và y=3 vào y=(m-1)x+m-5, ta được:

\(0\cdot\left(m-1\right)+m-5=3\)

=>m-5=3

=>m=8

b: Thay x=-1 và y=0 vào y=(m-1)x+m-5, ta được:

\(-\left(m-1\right)+m-5=0\)

=>-m+1+m-5=0

=>-4=0(vô lý)

c: Thay x=0 và y=0 vào y=(m-1)x+m-5, ta được:

\(0\left(m-1\right)+m-5=0\)

=>m-5=0

=>m=5

NV
8 tháng 7 2021

a. Để đồ thị qua A

\(\Rightarrow-1=-3m+m-1\)

\(\Leftrightarrow m=0\)

b. Để đồ thị cắt trục tung tại điểm có tung độ 2

\(\Rightarrow m-1=2\)

\(\Leftrightarrow m=3\)

c. Để đồ thị cắt trục hoành tại điểm có hoành độ 3

\(\Rightarrow0=3m+m-1\)

\(\Leftrightarrow m=\dfrac{1}{4}\)

10 tháng 3 2018

lo n me may

10 tháng 4 2018

Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả. 
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1). 
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2. 
Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

a: Thay x=0 và y=2 vào (d), ta được: 

a=2

b: Thay x=-1 và y=0 vào (d), ta được:

\(-\left(a-2\right)+a=0\)

\(\Leftrightarrow2=0\)(vô lý)

12 tháng 12 2023

y=3x+b

a)Vì hàm số cắt trục tung tại điểm có tung độ = -2 nên x=0,y=-2

Thay x=0,y=-2 vào hàm số ta đc:

3.0+b=-2

\(\Rightarrow\)b=-2

b)Để  đồ thị hàm số đi qua điểm M[ -2, 1] nên x=-2,y=1

2.(-2)+b=1\(\Rightarrow\)-4+b=1\(\Rightarrow\)b=5

c) thay x=3,y=x-2 ta đc :

y=1-2=-1

Thay x=1 và y=-1 vào y=3x+b ta đc

3.1+b=-1 \(\Rightarrow\)3+b=-1 \(\Rightarrow\)b=-4

10 tháng 4 2018

Trước hết xin nói ngay rằng đồ thị của hàm số y = (2x - 1)(x - 1) là một parabol, không có đường tiệm cận nào cả. 
Có lẽ bạn muốn nói đến hàm số y = (2x - 1)/(x - 1). 
Nếu đúng vậy thì đồ thị của hàm số là một hyperbol vuông góc có hai đường tiệm cận là đường thẳng x = 1 và đường thẳng y = 2. 
Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)

19 tháng 4 2020

2, Giao điểm của hai đường tiệm cận là I(1; 2). 
Gọi M(x,y) là một điểm trên đồ thị. Hệ số góc của đường thẳng IM là 
m = (y - 2)/(x - 1) = {[(2x - 1)/(x - 1)] - 2}/(x - 1) = [(2x - 1) - 2(x - 1)]/(x - 1)² 
m = 1/(x - 1)² 
Hệ số góc của đường tiếp tuyến Mt với đồ thị tại M(x,y) là 
m' = dy/dx = -1/(x - 1)² 
Muốn cho MI và Mt thẳng góc với nhau thì điều kiện cần và đủ là 
mm' = -1 
-1/(x - 1)^4 = -1 
(x - 1)^4 = 1 
(x - 1)² = 1 
x - 1 = ±1 
x = 0 hay x = 2 
Có 2 điểm M thỏa mãn điều kiện của bài toán là (0; 1) và (2; 3)