tìm x, y .z biết : x^2 + y^ 2 + z^2 = yz+xz+xy và x^2012 + y^2012 + z^2012= 3^2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Có: }x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+x^2+y^2+y^2+z^2+z^2=2xy+2yz+2xz\)
\(\Leftrightarrow x^2+x^2+y^2+y^2+z^2+z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\text{Vì }\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0\text{ và }\left(x-z\right)^2\ge0\)
\(\text{Nên để }\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\text{thì }\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(x-z\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow}x=y=z}\)
\(\text{Khi đó: }x^{2011}+y^{2011}+z^{2011}=3^{2012}\)
\(\Leftrightarrow x^{2011}+x^{2011}+x^{2011}=3^{2012}\left(\text{Vì x = y = z}\right)\)
\(\Leftrightarrow3x^{2011}=3^{2012}\)
\(\Leftrightarrow x^{2011}=3^{2011}\)
\(\Leftrightarrow x=3\)
\(\text{Vậy }x=y=z=3\)
x2+y2+z2= xy+yz+zx.
=> 2x2+2y2+2z2-2xy-2yz-2zx=0
=> ( x-y)2+(y-z.)2+(z-x)2 =0
=> x=y=z=0
Thay x=y=z vào x2011+y2011+z2011=32012 ta được:
3.x2011=3.32011
=> x2011=32011
=> x=3 hoặc x = -3
Hay x=y=z=3 hoặc x=y=z=-3
1) có bn giải rồi ko giải nữa
2) \(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)....\left(2011^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)....\left(2012^4+\frac{1}{4}\right)}\)
Với mọi n thuộc N ta có :
\(n^4+\frac{1}{4}=\left(n^4+2.\frac{1}{2}.n^2+\frac{1}{4}\right)-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2=\left(n^2-n+\frac{1}{2}\right)\left(n^2+n+\frac{1}{2}\right)\)
\(=\left[n\left(n-1\right)+\frac{1}{2}\right]\left[n\left(n+1\right)+\frac{1}{2}\right]\)
Áp dụng ta được :
\(A=\frac{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)....\left(2011.2012+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right).......\left(2012.2013+\frac{1}{2}\right)}\)
\(=\frac{\frac{1}{2}}{2012.2013+\frac{1}{2}}=\frac{1}{8100313}\)
Ta có :\(x^2+y^2+z^2=xy+yz+xz\Rightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
Phối hợp lại ta được nhứng hằng đẳng thức cộng lại được :
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà các đa thức mũ 2 đều lớn hơn hoặc bằng 0 nên ta được :
\(x=y=z\)
Thế vào công thức của đề bài ta được :
\(x^{2012}+y^{2012}+z^{2012}=3x^{2012}=3^{2013}\Rightarrow x^{2012}=3^{2012}\Rightarrow x=3\)
Hay x =y =z = 3
sai rồi
cái đúng khi dùng bất đẳng thức chứ không phải là hằng đằng thức nha bạn
bài này chị bt làm rồi nhưng làm hơi dài
chị bận tối chị viết cho nha
hihihhihhi
Có : (x-y)+(y-z)+(x+z) = 2011+(-2012)+2013
=> x-y+y-z+z-x = 2012
=> 2x=2012
=>x=1006
=>y=1006-2011=-1005
=>z=2013-1006=1007
Chuc ban hoc gioi !!!
\(x^2+y^2+z^2=xy+yz+zx\Leftrightarrow2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)=0\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0ma:\left(x-y\right)^2;\left(y-z\right)^2;\left(x-z\right)^2\ge0\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Rightarrow x=y=z\Rightarrow x^{2012}=y^{2012}=z^{2012}ma:x^{2012}+y^{2012}+z^{2012}=3^{2013}\Rightarrow x^{2012}=y^{2012}=z^{2012}=\left(\pm3\right)^{2012}\Rightarrow x=y=z=\pm3\)