K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

\(a,\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\left(Đk:x\ge1\right)\)

\(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=|\sqrt{x-1}-1|+|\sqrt{x-1}+1|\)

\(=\sqrt{x-1}-1+\sqrt{x-1}+1=2\sqrt{x-1}\)(Ko chắc:v)

\(b,\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)

\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

Câu 1:

a: \(\dfrac{2}{5}\sqrt{75}-0,5\cdot\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\cdot\sqrt{12}\)

\(=\dfrac{2}{5}\cdot5\sqrt{3}-0,5\cdot4\sqrt{3}+10\sqrt{3}-\dfrac{2}{3}\cdot2\sqrt{3}\)

\(=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}\)

\(=10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)

b: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)

\(=\dfrac{\sqrt{3}\cdot3\sqrt{3}-2\sqrt{3}}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{9-6}\)

\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+3-\sqrt{6}\)

\(=\dfrac{\sqrt{3}}{\sqrt{2}}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)

c: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

=\(\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

Bài 2:

a: loading...

b: Phương trình hoành độ giao điểm là:

\(3x+2=-x-4\)

=>4x=-6

=>x=-3/2

Thay x=-3/2 vào y=-x-4, ta được:

\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=-\dfrac{5}{2}\)

Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)

c: Vì (d2)//(d) nên \(\left\{{}\begin{matrix}a=-1\\b\ne-4\end{matrix}\right.\)

Vậy: (d2): y=-x+b

Thay x=-2 và y=5 vào (d2), ta được:

\(b-\left(-2\right)=5\)

=>b+2=5

=>b=5-2=3

Vậy: (d2): y=-x+3

b: \(=\left(5+\sqrt{21}\right)\left(\sqrt{7}-\sqrt{3}\right)\sqrt{10-2\sqrt{21}}\)

\(=\left(5+\sqrt{21}\right)\left(10-2\sqrt{21}\right)\)

\(=50-10\sqrt{21}+10\sqrt{21}-42=8\)

a: \(A=\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}\)

=>\(A^2=\sqrt{2}-1+\sqrt{2}+1+2\sqrt{2-1}=2\sqrt{2}+2\)

=>\(A=\sqrt{2\sqrt{2}+2}\)

Đặt \(B=\sqrt{\sqrt{2}-1}+\sqrt{\sqrt{2}+1}-\sqrt{2+\sqrt{2}}\)

=>\(B=\sqrt{2\sqrt{2}+2}-\sqrt{2+\sqrt{2}}\)

=>\(B^2=2\sqrt{2}+2+2+\sqrt{2}-2\sqrt{\sqrt{2}\left(2+\sqrt{2}\right)\left(2+\sqrt{2}\right)}\)

=>\(B^2=4+3\sqrt{2}-2\sqrt[4]{2}\left(2+\sqrt{2}\right)\)

=>\(B\simeq0,35\)

28 tháng 6 2021

`a)(5sqrt2-2sqrt5)/(sqrt5-sqrt2)+6/(2-sqrt{10})`

`=(sqrt{10}(sqrt5-sqrt2))/(sqrt5-sqrt2)+(6(2+sqrt{10}))/(4-10)`

`=sqrt{10}-(2+sqrt{10})`

`=-2`

`b)6/(sqrt5-1)+7/(1-sqrt3)-2/(sqrt3-sqrt5)`

`=(6(sqrt5+1))/(5-1)+(7(1+sqrt3))/(1-3)-(2(sqrt3+sqrt5))/(3-5)`

`=(6(sqrt5+1))/4-(7+7sqrt3)/2+sqrt3+sqrt5`

`=(3sqrt5+3)/2-(7+7sqrt3)/2+sqrt3+sqrt5`

`=(3sqrt5+3-7-7sqrt3+2sqrt3+2sqrt5)/2`

`=(5sqrt5-5sqrt3-4)/2`

Ta có: \(\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)

\(=\dfrac{8+x\left(1+\sqrt{x}-1\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x\sqrt{x}+8}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+2}{x-4}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}+4+x-2\sqrt{x}}{2\left(x-4\right)}\)

\(=\dfrac{x+4}{2x-8}\)

28 tháng 6 2021

`a)((sqrt(14)-sqrt7)/(1-sqrt2)+(sqrt{15}-sqrt5)/(1-sqrt3)):1/(sqrt7-sqrt5)`

`=((sqrt7(sqrt2-1))/(1-sqrt2)+(sqrt5(sqrt3-1))/(1-sqrt3)).(sqrt7-sqrt5)`

`=(-sqrt7-sqrt5)*(sqrt7-sqrt5)`

`=-(sqrt7+sqrt5)(sqrt7+sqrt5)`

`=-(7-5)=-2`

`b)sqrt2+1/sqrt{5+2sqrt6}+2/sqrt{8+2sqrt{15}}`

`=sqrt2+1/sqrt{3+2sqrt{3}.sqrt2+2}+2/sqrt{5+2sqrt{5}.sqrt3+3}`

`=sqrt2+1/sqrt{(sqrt3+sqrt2)^2}+2/sqrt{(sqrt5+sqrt3)^2}`

`=sqrt2+1/(sqrt3+sqrt2)+2/(sqrt5+sqrt3)`

`=sqrt2+((sqrt3+sqrt2)(sqrt3-sqrt2))/(sqrt3+sqrt2)+((sqrt5+sqrt3)(sqrt5-sqrt3))/(sqrt5+sqrt3)`

`=sqrt2+sqrt3-sqrt2+sqrt5-sqrt3=sqrt5`

a) Ta có: \(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left(-\dfrac{\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}-\dfrac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)

\(=-2\)

b) Ta có: \(\sqrt{2}+\dfrac{1}{\sqrt{5+2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)

\(=\sqrt{2}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\)

\(=\sqrt{2}+\sqrt{3}-\sqrt{2}+\sqrt{5}-\sqrt{3}\)

\(=\sqrt{5}\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2021

A. ĐKXĐ: $x>0; x\neq 1; x\neq 4$

\(A=\left[\frac{x-\sqrt{x}+2}{(\sqrt{x}+1)(\sqrt{x}-2)}-\frac{x}{\sqrt{x}(\sqrt{x}-2)}\right].\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\left[\frac{x-\sqrt{x}+2}{(\sqrt{x}+1)(\sqrt{x}-2)}-\frac{\sqrt{x}(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}-2)}\right].\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{-2(\sqrt{x}-1)}{(\sqrt{x}+1)(\sqrt{x}-2)}.\frac{\sqrt{x}-2}{\sqrt{x}-1}=\frac{-2}{\sqrt{x}+1}\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2021

B.

ĐKXĐ: $x\geq 0, x\neq \frac{1}{4}$

\(B=\frac{2\sqrt{x}-1+2\sqrt{x}+1}{(2\sqrt{x}+1)(2\sqrt{x}-1)}.(1-4x)=\frac{4\sqrt{x}}{4x-1}(1-4x)=-4\sqrt{x}\)

a) Ta có: \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)

\(=\dfrac{-\sqrt{2}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{-\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)

\(=-2\sqrt{2}\)

b) Ta có: \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)

\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)

\(=\sqrt{2}\)

c) Ta có: \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right)\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\)

\(=\left(\dfrac{-\sqrt{5}\left(2-\sqrt{5}\right)}{2-\sqrt{5}}-2\right)\left(\dfrac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}+3}-2\right)\)

\(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\)

\(=-\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)=-1\)

d) Ta có: \(\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}+\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\)

\(=\left(\sqrt{2}-\sqrt{3}\right)^2+\left(\sqrt{3}+\sqrt{2}\right)^2\)

\(=5-2\sqrt{6}+5+2\sqrt{6}\)

=10

21 tháng 7 2023

a) \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)

\(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}}\)

\(=\dfrac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{3^2-\left(\sqrt{5}\right)^2}}\)

\(=\dfrac{\left|3-\sqrt{5}\right|}{\sqrt{9-5}}\)

\(=\dfrac{3-\sqrt{5}}{2}\)

b) \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

\(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{2^2-\left(\sqrt{3}\right)^2}}\)

\(=\dfrac{\left|2-\sqrt{3}\right|}{\sqrt{4-3}}\)

\(=\dfrac{2-\sqrt{3}}{1}\)

\(=2-\sqrt{3}\)

a: \(=\sqrt{\dfrac{\left(3-\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}}=\dfrac{3-\sqrt{5}}{2}\)

b: \(=\sqrt{\dfrac{\left(2-\sqrt{3}\right)^2}{1}}=2-\sqrt{3}\)

d: \(=\left(-3+3\sqrt{6}+4+2\sqrt{6}-12-4\sqrt{6}\right)\left(\sqrt{6}+11\right)\)

=(căn 6-11)(căn 6+11)

=6-121=-115

1:

a: ĐKXĐ: 1-x>=0

=>x<=1

b: ĐKXĐ: 2/x>=0

=>x>0

c: ĐKXĐ: 4/x+1>=0

=>x+1>0

=>x>-1

d: ĐKXĐ: x^2+2>=0

=>x thuộc R

Câu 2:

a: \(=\left|-\sqrt{2-1}\right|=\sqrt{1}=1\)

b: \(=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)