Bài 1 : Cho tam giác ABC vuông tại A . Đường cao AH
a, CM : \(\Delta\)ABC \(\simeq\)\(\Delta\)ABH ; \(\Delta\)ABH \(\simeq\)\(\Delta\)CAH
b,Kẻ đường phân giác BD giao AH tại I . CM : AB\(\times\)BI = BH\(\times\)BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, đường cao AH
a) CM: tam giác ABH đồng dạng tam giác CBA
b) CM: AC2=CH.BC
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{B}\) chung
Do đó:ΔABH\(\sim\)ΔCBA
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot CB\)(hệ thức lượng)
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: ΔABC vuông tại A
mà AH là đường cao
nên HA^2=HB*HC
c: AI/IH=BA/BH
EC/AE=BC/BA
mà BA/BH=BC/BA
nên AI/IH=EC/AE
=>AI*AE=IH*EC
a) Vì \(AH\) là đường cao nên \(\widehat {AHB} = \widehat {AHC} = 90^\circ \)
Xét tam giác \(ABH\) và tam giác \(CBA\) có:
\(\widehat B\) (chung)
\(\widehat {AHB} = \widehat {CAB} = 90^\circ \) (chứng minh trên)
Suy ra, \(\Delta ABH\backsim\Delta CBA\) (g.g).
Do đó, \(\frac{{AB}}{{CB}} = \frac{{BH}}{{AB}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Suy ra, \(A{B^2} = BH.BC\) .
b)
- Vì \(HE\) vuông góc với \(AB\) nên \(\widehat {HEA} = \widehat {HEB} = 90^\circ \)
Xét tam giác \(AHE\) và tam giác \(ABH\) có:
\(\widehat {HAE}\) (chung)
\(\widehat {HEA} = \widehat {AHB} = 90^\circ \) (chứng minh trên)
Suy ra, \(\Delta AHE\backsim\Delta ABH\) (g.g).
Do đó, \(\frac{{AH}}{{AB}} = \frac{{AE}}{{AH}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Suy ra, \(A{H^2} = AB.AE\) . (1)
- Vì \(HF\) vuông góc với \(AC\) nên \(\widehat {HFC} = \widehat {HFA} = 90^\circ \)
Xét tam giác \(AHF\) và tam giác \(ACH\) có:
\(\widehat {HAF}\) (chung)
\(\widehat {AFH} = \widehat {AHC} = 90^\circ \) (chứng minh trên)
Suy ra, \(\Delta AHF\backsim\Delta ACH\) (g.g).
Do đó, \(\frac{{AH}}{{AC}} = \frac{{AF}}{{AH}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Suy ra, \(A{H^2} = AF.AC\) . (2)
Từ (1) và (2) suy ra, \(AE.AB = AF.AC\) (điều phải chứng minh)
c) Vì \(AE.AB = AF.AC \Rightarrow \frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\).
Xét tam giác \(AFE\) và tam giác \(ABC\) có:
\(\widehat A\) (chung)
\(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\) (chứng minh trên)
Suy ra, \(\Delta AFE\backsim\Delta ABC\) (c.g.c).
d) Vì \(HF\) vuông góc với \(AC\) nên \(CF \bot HI\), do đó, \(\widehat {CFH} = \widehat {CFI} = 90^\circ \).
Vì \(IN \bot CH \Rightarrow \widehat {CBI} = \widehat {HNI} = 90^\circ \).
Xét tam giác \(HFC\) và tam giác \(HNI\) có:
\(\widehat {CHI}\) (chung)
\(\widehat {HFC} = \widehat {HNI} = 90^\circ \) (chứng minh trên)
Suy ra, \(\Delta HFC\backsim\Delta HNI\) (g.g).
Suy ra, \(\frac{{HF}}{{HN}} = \frac{{HC}}{{HI}}\) (hai cặp cạnh tương ứng cùng tỉ lệ)
Do đó, \(\frac{{HF}}{{HC}} = \frac{{HN}}{{HI}}\).
Xét tam giác \(HNF\) và tam giác \(HIC\) có:
\(\widehat {CHI}\) (chung)
\(\frac{{HF}}{{HC}} = \frac{{HN}}{{HI}}\) (chứng minh trên)
Suy ra, \(\Delta HNF\backsim\Delta HIC\) (c.g.c).
2:
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
b: BC=4+9=13cm
AH=căn 4*9=6cm
S ABC=1/2*6*13=39cm2
Hình bạn tự vẽ nhé
a) Xét ΔABH và ΔCBA có :
^AHB = ^A = 900
^B chung
=> ΔABH ~ ΔCBA (g.g)
b) Vì ΔABC vuông tại A, áp dụng định lí Pythagoras ta có :
\(BC^2=AB^2+AC^2\)
<=> \(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC có BD là phân giác của ^B nên theo tính chất đường phân giác trong tam giác ta có : \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{AD}{AB}=\dfrac{DC}{BC}=\dfrac{AD+DC}{AB+BC}=\dfrac{AC}{AB+BC}=\dfrac{8}{6+10}=\dfrac{1}{2}\)
=> \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{1}{2}\\\dfrac{DC}{BC}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\dfrac{1}{2}AB=3cm\\DC=\dfrac{1}{2}BC=5cm\end{matrix}\right.\)
c) Xét ΔABD và ΔHBI có :
^A = ^BHI = 900
^ABD = ^HBI ( do BD là phân giác của ^B )
=> ^ABD ~ ΔHBI (g.g)
=> \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> AB.BI = HB.BD ( đpcm )
d) Từ \(\dfrac{AB}{HB}=\dfrac{BD}{BI}=\dfrac{AD}{HI}\)=> \(\dfrac{AB}{AD}=\dfrac{BD}{BI}=\dfrac{HB}{HI}=2\)
Ta có : \(S_{ABD}=\dfrac{1}{2}AB\cdot AD=\dfrac{1}{2}\cdot6\cdot3=9cm^2\)
mà ta có \(\dfrac{S_{ABD}}{S_{HBI}}=2^2=4\)=> SABD = 4SHBI
<=> 9 = 4SHBI <=> SHBI = 9/4cm2