K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

a) 

Đặt \(A=9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x+1+1\)

\(=\left(3x+1\right)^2+1\)

Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)

Hay \(A\ge1>0;\forall x\)

Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức

25 tháng 7 2019

\(a,9x^2-6x+2\)

\(=\left(3x\right)^2-2.3x.1+1^2+1\)

\(=\left(3x-1\right)^2+1\)

\(\left(3x-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)

\(\Rightarrow9x^2-6x+2>0\forall x\)

\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

\(\Rightarrow x^2+x+1>0\forall x\)

25 tháng 7 2019

\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)

\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)

\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)

\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)

\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)

25 tháng 7 2019

Cách khác câu e:

\(x^2-xy+y^2=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\ge0\forall xy\) (đpcm)

a: Ta có: \(x^2-8x+20\)

\(=x^2-8x+16+4\)

\(=\left(x-4\right)^2+4>0\forall x\)

b: Ta có: \(-x^2+6x-19\)

\(=-\left(x^2-6x+19\right)\)

\(=-\left(x^2-6x+9+10\right)\)

\(=-\left(x-3\right)^2-10< 0\forall x\)

a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

b: \(x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

c: \(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)

12 tháng 5 2022

`M=-9x^2+6x-3`

`M=-(9x^2-6x+3)`

`M=-(9x^2-6x+1+2)`

`M=-(3x-1)^2-2`

Vì `-(3x-1)^2 <= 0 AA x`

`<=>-(3x-1)^2-2 <= -2 AA x`

  Hay `M <= -2 AA x`

Dấu "`=`" xảy ra `<=>(3x-1)^2=0<=>3x-1=0<=>x=1/3`

Vậy `GTLN` của `M` là `-2` khi `x=1/3`

12 tháng 5 2022

\(M=-9x^2+6x-3\)

\(M=-\left(9x^2-6x+3\right)\)

\(M=-\left[\left(3x-1\right)^2+2\right]\)

\(M=-\left(3x-1\right)^2-2\)

\(\Rightarrow Max_M=-2\) khi \(3x-1=0\)

                                 \(\Leftrightarrow x=\dfrac{1}{3}\)

10 tháng 7 2021

\(A=9x^2-6x+2=\left(3x\right)^2-2.3x+1+1=\left(3x-1\right)^2+1>0\forall x\)

Vậy ta có đpcm 

\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1>0\forall x;y\)

Vậy ta có đpcm 

10 tháng 7 2021

Trả lời:

\(A=9x^2-6x+2=\left(3x\right)^2-2.3x.1+1+1=\left(3x-1\right)^2+1\ge1>0\forall x\)

Vậy A > 0 với mọi x 

\(B=x^2-2xy+y^2+1=\left(x-y\right)^2+1\ge1>0\forall x;y\)

Vậy B > 0 với mọi x;y

10 tháng 2 2019

câu B nhé , vẽ hàm số là sẽ thấy

Hỏi đáp Toán