Tìm nghiệm của đa thức:
a)P(x)=2x3-5x2-x+6
b)Q(x)=(x+1)2(x-3)(x+5)+3x2+6x+39
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
Lời giải:
a.
\(C(x)=A(x)+B(x)=(2x^3-3x^2-x+1)+(-2x^3+3x^2+5x-2)\)
\(=(2x^3-2x^3)+(-3x^2+3x^2)+(-x+5x)+(1-2)=4x-1\)
b.
$C(x)=4x-1=0$
$\Rightarrow x=\frac{1}{4}$
Vậy $x=\frac{1}{4}$ là nghiệm của $C(x)$
c.
\(D(x)=A(x)-B(x)=(2x^3-3x^2-x+1)-(-2x^3+3x^2+5x-2)\)
\(=2x^3-3x^2-x+1+2x^3-3x^2-5x+2\)
\(=4x^3-6x^2-6x+3\)
`a)`
`@A(x)=5x^2+2x^3+8-7x`
`=2x^3+5x^2-7x+8`
`@B(x)=3x^2-1-2x+4x^3`
`=4x^3+3x^2-2x-1`
_______________________________________
`b)A(-1)=2.(-1)^3+5.(-1)^2-7.(-1)+8`
`=2.(-1)+5.1+7+8`
`=-2+5+7+8=18`
____________________________________________
`c)A(x)=B(x)+C(x)`
`=>C(x)=A(x)-B(x)`
`=>C(x)=(2x^3+5x^2-7x+8)-(4x^3+3x^2-2x-1)`
`=>C(x)=2x^3+5x^2-7x+8-4x^3-3x^2+2x+1`
`=>C(x)=-2x^3+2x^2-5x+9`
a)\(A\left(x\right)=2x^3+5x^2-7x+8\)
\(B\left(x\right)=4x^2+3x^2-2x-1\)
b)\(A\left(-1\right)=2.\left(-1\right)^3+5.\left(-1\right)^2-7.\left(-1\right)+8\)
\(A\left(-1\right)=-2+5+7+8=18\)
c)\(A\left(x\right)=B\left(x\right)+C\left(x\right)\)
\(=>C\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(C\left(x\right)=2x^3+5x^2-7x+8-4x^2-3x^2+2x+1\)
\(C\left(x\right)=-x^3+x^2-5x+9\)
a) P(x) = \(2x^3+2x^2-7x^2-7x+6x+6\)
\(=2x\left(x+1\right)-7x\left(x+1\right)+6\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^2-7x+6\right)\)
\(=\left(x+1\right)\left(2x^2-4x-3x+6\right)\)
\(=\left(x+1\right)\left(2x\left(x-2\right)-3\left(x-2\right)\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(2x-3\right)\)
Cho P(x) = 0 và ta sẽ tìm được nghiệm một cách dễ dàng:)
b) Có cách này nè:) Bài này tớ không dùng khai triển nữa đâu, vừa mất thời gian lại thiếu tự nhiên nữa chớ:( và ko chắc đâu
\(Q\left(x\right)=\left(x+1\right)^2\left(x-3\right)\left(x+5\right)+3\left(x^2+2x+1\right)+36\)
\(=\left(x+1\right)^2\left(x-3\right)\left(x+5\right)+3\left(x+1\right)^2+36\)
\(=\left(x+1\right)^2\left[\left(x-3\right)\left(x+5\right)+3\right]+36=0\)
\(=\left(x+1\right)^2\left[x^2+2x-12\right]+36=0\)
\(=\left(x^2+2x+1\right)\left(x^2+2x-12\right)+36\)
Đặt x2 + 2x = t suy ra \(Q\left(x\right)=Q\left(t\right)=\left(t+1\right)\left(t-12\right)+36\)
\(=t^2-11t-12+36=t^2-11t+24\)
\(=\left(t-8\right)\left(t-3\right)\). Cho Q(x) = 0 tức là Q(t) = 0 khi đó suy ra
t = 8 hoặc t = 3
Với t = 8 suy ra \(x^2+2x-8=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Với t - 3 suy ra \(x^2+2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (mấy chỗ này dễ bạn tự phân tích thành nhân tử rồi giải ra thôi)
Vậy tập hợp nghiệm của đa thức là: S = {2;-4;1;-3}