K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

Mk năm nay mới lên lớp 9 thôi nhưng cũng biết chút!Mk giải ho bạn câu 1 còn lại bạn tự giải nhé!
1,\(\frac{1}{1+\sqrt{5}}\)+\(\frac{1}{\sqrt{5}-1}\)
=\(\frac{1}{\sqrt{5}+1}\)+\(\frac{1}{\sqrt{5}-1}\)
=\(\frac{\sqrt{5}-1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)+\(\frac{\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
=\(\frac{\sqrt{5}-1}{5-1}\)+\(\frac{\sqrt{5}+1}{5-1}\)
=\(\frac{\sqrt{5}-1}{4}\)+\(\frac{\sqrt{5}+1}{4}\)
=\(\frac{\sqrt{5}-1+\sqrt{5}+1}{4}\)
=\(\frac{2\sqrt{5}}{4}\)
=\(\frac{\sqrt{5}}{2}\)

19 tháng 7 2019
https://i.imgur.com/9Px2Glj.jpg
19 tháng 7 2019

\(1)\dfrac{{14}}{{\sqrt 7 }} = \dfrac{{14\sqrt 7 }}{{\sqrt 7 .\sqrt 7 }} = \dfrac{{14\sqrt 7 }}{7} = 2\sqrt 7 \\ 2)\dfrac{{\sqrt 3 }}{{\sqrt 2 }} = \dfrac{{\sqrt 3 .\sqrt 2 }}{{\sqrt 2 .\sqrt 2 }} = \dfrac{{\sqrt 6 }}{2}\\ 3)\dfrac{5}{{\sqrt {10} }} = \dfrac{{5\sqrt {10} }}{{\sqrt {10} .\sqrt {10} }} = \dfrac{{5\sqrt {10} }}{{10}} = \dfrac{{\sqrt {10} }}{2}\\ 4)\dfrac{3}{{2\sqrt 5 }} = \dfrac{{3.2\sqrt 5 }}{{2\sqrt 5 .2\sqrt 5 }} = \dfrac{{6\sqrt 5 }}{{20}} = \dfrac{{3\sqrt 5 }}{{10}}\\ 5)\dfrac{{7 + \sqrt 7 }}{{\sqrt 7 + 1}} = \dfrac{{\left( {7 + \sqrt 7 } \right)\left( {\sqrt 7 - 1} \right)}}{{\left( {\sqrt 7 + 1} \right)\left( {\sqrt 7 - 1} \right)}} = \dfrac{{6\sqrt 7 }}{6} = \sqrt 7 \\ 6)\dfrac{{\sqrt 2 - \sqrt 6 }}{{3\sqrt 3 - 3}} = \dfrac{{\left( {\sqrt 2 - \sqrt 6 } \right)\left( {3\sqrt 3 + 3} \right)}}{{\left( {3\sqrt 3 - 3} \right)\left( {3\sqrt 3 + 3} \right)}} = \dfrac{{ - 2\sqrt 2 }}{6} = \dfrac{{ - \sqrt 2 }}{3}\\ 7)\dfrac{{\sqrt 3 }}{{3 - \sqrt 3 }} = \dfrac{{\sqrt 3 \left( {3 + \sqrt 3 } \right)}}{{\left( {3 - \sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}} = \dfrac{{3\sqrt 3 + 3}}{6} = \dfrac{{3\left( {\sqrt 3 + 1} \right)}}{6} = \dfrac{{\sqrt 3 + 1}}{2}\\ 8)\dfrac{2}{{2 - \sqrt 3 }} = \dfrac{{2\left( {2 + \sqrt 3 } \right)}}{{\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)}} = 4 + 2\sqrt 3 \\ 9)\dfrac{{\sqrt 3 + 2}}{{2 - \sqrt 3 }} = \dfrac{{\left( {\sqrt 3 + 2} \right)\left( {2 + \sqrt 3 } \right)}}{{\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)}} = 7 + 4\sqrt 3 \\ 10)\dfrac{{3\sqrt 5 }}{{2\sqrt 5 - 1}} = \dfrac{{3\sqrt 5 \left( {2\sqrt 5 + 1} \right)}}{{\left( {2\sqrt 5 - 1} \right)\left( {2\sqrt 5 + 1} \right)}} = \dfrac{{30 + 3\sqrt 5 }}{{19}}\\ 11)\dfrac{1}{{\sqrt 3 }} = \dfrac{{1.\sqrt 3 }}{{\sqrt 3 .\sqrt 3 }} = \dfrac{{\sqrt 3 }}{3} \)

17 tháng 9 2018

Đặt \(\hept{\begin{cases}\sqrt{1+\frac{\sqrt{3}}{2}}=a\\\sqrt{1-\frac{\sqrt{3}}{2}}=b\end{cases}}\)

\(\Rightarrow a^2+b^2=2;ab=\frac{1}{2};a-b=1\)

\(\Rightarrow\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=\frac{a^2}{1+a}+\frac{b^2}{1-b}\)

\(=\frac{a^2+b^2-ab\left(a-b\right)}{1-ab+\left(a-b\right)}=\frac{2-\frac{1}{2}.1}{1-\frac{1}{2}+1}=1\)

22 tháng 10 2018

a, \(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)

\(\Rightarrow\) \(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)

\(\Rightarrow\) \(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)

\(\Rightarrow\) \(2S=1-\frac{1}{2017}\)

\(\Rightarrow\) \(2S=\frac{2016}{2017}\)

\(\Rightarrow\) \(S=\frac{1008}{2017}\)

19 tháng 7 2016

a) Trục căn thức ở mỗi số hạng của biểu thức A,ta có:

 \(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)=\(\frac{\sqrt{2}+\sqrt{1}}{1-2}-\frac{\sqrt{3}+\sqrt{2}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}-...+\frac{\sqrt{2007}+\sqrt{2008}}{2007-2008}\)

\(-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2007}+\sqrt{2008}\right)\)

=\(-1-\sqrt{2008}\)

b)Ta xét số hạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng vào biểu thức B ta được: 

B= \(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}\)\(\frac{10}{11}\)

19 tháng 7 2016

\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)

\(=\frac{-1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{1}{\sqrt{4}-\sqrt{3}}+\frac{1}{\sqrt{5}-\sqrt{4}}-....+\frac{1}{\sqrt{2007}-\sqrt{2006}}-\frac{1}{\sqrt{2008}-\sqrt{2007}}\)

\(=\frac{-1\cdot\left(\sqrt{2}+\sqrt{1}\right)}{2-1}+\frac{1\cdot\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\frac{1\cdot\left(\sqrt{4}+\sqrt{3}\right)}{4-3}+\frac{1\cdot\left(\sqrt{5}+\sqrt{4}\right)}{5-4}-...+\frac{1\cdot\left(\sqrt{2007}+\sqrt{2006}\right)}{2007-2006}-\frac{1 \left(\sqrt{2008}+\sqrt{2007}\right)}{2008-2007}\)

\(=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2006}+\sqrt{2007}-\sqrt{2007}-\sqrt{2008}\) 

\(=-1-\sqrt{2008}\)

 

25 tháng 9 2016

Tiếc quá 

mình chưa học đến

bik thì giúp cho