Tìm x
\(x^3-\frac{1}{9}x=0\)
x.\(x^4=\frac{1}{32}.\frac{1}{27}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
sua de \(\frac{3}{x^4-x^3+x-1}\) \(-\frac{1}{x^4+x^3-x-1}-\frac{4}{x^5-x^4+x^3-x^2+x-1}\) (dk \(x\ne+-1\) )
P=\(\frac{3}{\left(x^2-1\right)\left(x^2-x+1\right)}-\frac{1}{\left(x^2-1\right)\left(x^2+x+1\right)}-\frac{4}{\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
=\(\frac{2}{x^4+x^2+1}>0\)
P\(< \frac{32}{9}\Leftrightarrow\frac{2}{x^4+x^2+1}< \frac{32}{9}\)
\(\Leftrightarrow16x^4+16x^2+7>0\)
\(\Rightarrow\)\(0< P< \frac{32}{9}\) VOI X KHAC 1;-1
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
a) Ta có: \(\left(x-2\right)^3+\frac{8}{27}=0\)
\(\Leftrightarrow\left(x-2\right)^3=\frac{-8}{27}\)
\(\Leftrightarrow\left(x-2\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Leftrightarrow x-2=\frac{-2}{3}\)
hay \(x=\frac{-2}{3}+2=\frac{4}{3}\)
Vậy: \(x=\frac{4}{3}\)
b) Ta có: \(4\frac{1}{3}:\frac{x}{4}=6:0,3\)
\(\Leftrightarrow\frac{13}{3}\cdot\frac{4}{x}=20\)
\(\Leftrightarrow\frac{4}{x}=20:\frac{13}{3}=20\cdot\frac{3}{13}=\frac{60}{13}\)
hay \(x=\frac{13\cdot4}{60}=\frac{13}{15}\)
Vậy: \(x=\frac{13}{15}\)
c) Ta có: \(\left(0,25-30\%x\right)\cdot\frac{1}{3}-\frac{1}{4}=5\frac{1}{6}\)
\(\Leftrightarrow\left(\frac{1}{4}-\frac{3x}{10}\right)\cdot\frac{1}{3}=\frac{31}{6}+\frac{1}{4}=\frac{65}{12}\)
\(\Leftrightarrow\frac{1}{4}-\frac{3x}{10}=\frac{65}{12}:\frac{1}{3}=\frac{65}{12}\cdot3=\frac{65}{4}\)
\(\Leftrightarrow\frac{3x}{10}=\frac{1}{4}-\frac{65}{4}=-16\)
\(\Leftrightarrow3x=-160\)
hay \(x=\frac{-160}{3}\)
Vậy: \(x=\frac{-160}{3}\)
d) Ta có: \(\frac{x-2}{-\frac{2}{9}}=\frac{-2}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=-2\cdot\left(-\frac{2}{9}\right)=\frac{4}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=\frac{2}{3}\\x-2=-\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{2}{3}+2\\x=\frac{-2}{3}+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}\\x=\frac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{8}{3};\frac{4}{3}\right\}\)
a/ (x - 2)3 + \(\frac{8}{27}\) = 0
=> (x - 2)3 = 0 - \(\frac{8}{27}\) = \(\frac{-8}{27}\)
=> x - 2 = \(-\frac{2}{3}\)
=> x = \(-\frac{2}{3}+2=\frac{4}{3}\)
b/ \(4\frac{1}{3}:\frac{x}{4}=6:0,3\)
=> \(4\frac{1}{3}:\frac{x}{4}=6:\frac{3}{10}=6.\frac{10}{3}=20\)
=> \(\frac{x}{4}=4\frac{1}{3}:20=\frac{13}{3}.\frac{1}{20}=\frac{13}{60}\)
=> \(x=\frac{13}{60}.4=\frac{13}{15}\)
c/ \(\left(0,25-30\%x\right).\frac{1}{3}-\frac{1}{4}=5\frac{1}{6}\)
=> \(\left(0,25-30\%x\right).\frac{1}{3}=5\frac{1}{6}+\frac{1}{4}=\frac{65}{12}\)
=> \(0,25-\frac{30}{100}x=\frac{65}{12}:\frac{1}{3}=\frac{65}{12}.3=\frac{65}{4}\)
=> \(\frac{3}{10}x=0,25-\frac{65}{4}=\frac{1}{4}-\frac{65}{4}=-\frac{64}{4}=-16\)
=> \(x=-16:\frac{3}{10}=-16.\frac{10}{3}=-\frac{160}{3}\)
a)
\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)
b)
\(\frac{1}{4}-(2x-1)^2=0\)
\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)
\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)
c)
\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)
\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)
\(\Leftrightarrow 5-x=\frac{-3}{4}\)
\(\Leftrightarrow x=\frac{23}{4}\)
d)
\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)
\(\Rightarrow x=3,8:2=1,9\)
e)
\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)
\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)
f)
\(5^{(x+5)(x^2-4)}=1\)
\(\Leftrightarrow (x+5)(x^2-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)
g)
\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)
\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)
h)
\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)
\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)
a) \(x^3-\frac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\frac{1}{9}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-\frac{1}{9}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\left(\frac{1}{3}\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\pm\frac{1}{3}\end{cases}}}\)
Vậy \(x\in\left\{0;\frac{1}{3;};-\frac{1}{3}\right\}\)
b) \(x.x^4=\frac{1}{32}.\frac{1}{27}\)
\(\Rightarrow x^5=\frac{1}{864}\)
\(\Rightarrow x\in\varnothing\)