K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta sử dụng ẩn phụ:

\(\hept{\begin{cases}a=x+y-z\\b=y+z-x\\c=x+z-y\end{cases}}\)=> x+y+z=a+b+c

Khi đó :

A= (x+y+z)^3-(x+y-z)^3-(-x+y+z)^3-(x-y+z)^3=(a+b+c)^3+a^3+b^3+c^3=3(a+b)(b+c)(c+a)=3*2y*2z*2x=24xyz

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

27 tháng 1 2016

=3x-3y+y-2x+z-x-2y+z

=(3x-2x-x)-(3y-y+2y)+(z+z)

=0-4y+2z

=2z-4y

27 tháng 1 2016

giải hết ra lun và đáp số bằng mấy

26 tháng 2 2017

Dat  (x-y)2+(y-z)2+(x-z)2=A

=(x+y)3+z3-3x2y-3xy2-3xyz / A

=(x+y+z).(x2+2xy+y2-xy-yz+z2)-3xy(x+y+z) / A

=(x+y+z).(x2+y2+z2-xy-yz-xz) /A

=2(x+y+z).(x2+y2+z2-xy-yz-xz) /2A 

=(x+y+z)[ (x2-2xy+y2)+(y2-2yz+z2)+(x2-2xz+z2) / 2A

=(x+y+z).[ (x-y}2+(y-z)2+(x-z)] /2A

=(x+y+z). A /2A

=x+y+z /2

26 tháng 2 2017

kimh thế

\(M=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{x^2+y^2+z^2-xy-yz-xz}\)

\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{x^2+y^2+z^2-xy-yz-xz}\)

\(=x+y+z\)

13 tháng 11 2018

\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\frac{x^3+y^3+z^3-3xyz}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}=\frac{\left(x+y+z\right).\left(x^2+y^2+z^2-xy-yz-zx\right)}{2.\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)

p/s: áp dụng 7 hàng đẳng thức là làm đc =)

12 tháng 2 2020

a) A = x - y + z + z + y + x - 2y

A = (x + x) + (-y + y) + (z + z) - 2y

A = 2x + 0 + 2z - 2y 

A = 2 .(x + z - y)

b) Thay x = 3 ; y = -1 ; z = 2 vào biểu thức A , ta được :

A = 2 .[3 + 2 - (-1)]

A = 12

Vậy A = 12

Chúc bạn học tốt !