Cho hình thang ABCD có BC đây nhỏ.Gọi E,F lần lược là trung điểm AB,BD
a) CMR: EF cắt CD tại trung điểm I
b) Gọi K là trung điểm AC CMR 4 điểm E,K,F,I thẳng hàng
c) CMR: KF=AD-BC/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Vì \(\hept{\begin{cases}EA=ED\left(gt\right)\\FB=FC\left(gt\right)\end{cases}}\)
\(\Rightarrow\) EF là đường trung bình của hình thang ABCD.
\(\Rightarrow\) EF // AB // CD
Xét \(\Delta ABC\) có : \(\hept{\begin{cases}BF=FC\\FK//AB\end{cases}}\)
\(\Rightarrow AK=KC\)
Xét \(\Delta ABD\) có : \(\hept{\begin{cases}AE=ED\\EI//AB\end{cases}}\)
\(\Rightarrow BI=ID\)
Vậy \(\hept{\begin{cases}AK=KC\\BI=ID\end{cases}\left(đpcm\right)}\)
b ) Vì EF là đường trung bình của hình thang ABCD.
\(\Rightarrow EF=\frac{CD+AB}{2}=\frac{10+6}{8}=2\left(cm\right)\)
Mặt khác, ta có :
* EI là đường trung bình của \(\Delta ABD\)
\(\Rightarrow EI=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
* KF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow KF=\frac{1}{2}AB=\frac{1}{2}.6=3\left(cm\right)\)
Mà : EF = EI + IK + KF
\(\Rightarrow\) IK = EF - ( EI + KF ) = 8 - ( 3 + 3 ) = 2cm.
Vậy \(\hept{\begin{cases}EI=3cm\\KF=3cm\\IK=2cm\end{cases}}\)
Chúc bạn học tốt !!!
a. Xét △DMI có: AB//DM.
\(\Rightarrow\dfrac{AB}{DM}=\dfrac{IA}{IM}\) (hệ quả định lí Ta-let)
a. Xét △CMK có: AB//CM.
\(\Rightarrow\dfrac{AB}{CM}=\dfrac{KB}{KM}\) (hệ quả định lí Ta-let)
Mà \(DM=CM\) (M là trung điểm DC)
\(\Rightarrow\dfrac{AB}{DM}=\dfrac{KB}{KM}\)
-Xét △ABM có: \(\dfrac{IA}{IM}=\dfrac{KB}{KM}\left(=\dfrac{AB}{DM}\right)\)
\(\Rightarrow\)IK//AB (định lí Ta-let đảo).
b) -Xét △ADM có: EI//DM.
\(\Rightarrow\dfrac{EI}{DM}=\dfrac{AI}{AM}\) (hệ quả định lí Ta-let)
-Xét △ACM có: KI//CM.
\(\Rightarrow\dfrac{IK}{CM}=\dfrac{AI}{AM}\) (hệ quả định lí Ta-let)
Mà \(DM=CM\) (M là trung điểm DC)
\(\Rightarrow\dfrac{IK}{DM}=\dfrac{AI}{AM}=\dfrac{EI}{DM}\) nên \(IK=EI\).
-Xét △BCM có: KF//CM.
\(\Rightarrow\dfrac{KF}{CM}=\dfrac{BK}{BM}\) (hệ quả định lí Ta-let)
-Xét △BDM có: IK//DM.
\(\Rightarrow\dfrac{IK}{DM}=\dfrac{BK}{BM}\) (hệ quả định lí Ta-let)
Mà \(DM=CM\) (M là trung điểm DC)
\(\Rightarrow\dfrac{IK}{CM}=\dfrac{BK}{BM}=\dfrac{KF}{CM}\) nên \(IK=KF\)
-Vậy \(EI=IK=KF\)
a) Ta có EA = EB; FB = FC
=> EF là đtr/bình của h.thang ABCD
=> EF // AB
Ta có FB = FC; FK // AB
=> FK là đ.tr.bình của t.giác ABC
=> AK = KC
C.minh tương tự ta có BI = ID
b) Ta có KF = AB/2 = 6/2 = 3 cm ( KF là đ.tr.bình của t.giác ABC )
C.minh tương tự ta có EI = 3cm
Ta có EF là đ.tr.bình của h.thang ABCD
=> EF = ( AB + CD )/2 = ( 6 + 10 )/2 = 16/2 = 8 cm
Ta có EF = EI + IK + KF
=> IK = EF - ( EI + KF )
=> IK = 8 - ( 3 + 3 )
=> IK = 2 cm