a) Tìm số tự nhiên x sao cho \(24⋮\left(x-1\right)\left|x< 5\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>2^{x-1}-1=24-9\)
\(2^{x-1}-1=15\)
\(2^{x-1}=16\)
\(=>x-1=4\)
\(x=5\)
`2^(x-1) -1 = 24 - [3^2 - (2021^0 -1)]`
`=> 2^(x-1) -1 = 24 - [ 9 - (1-1)]`
`=> 2^(x-1) -1 = 24 - 9`
`=> 2^(x-1) -1 = 15`
`=> 2^(x-1) =15+1`
`=> 2^(x-1) = 16`
`=> 2^(x-1) = 2^4`
`=> x-1=4`
`=> x=4+1`
`=> x=5`
a) Ta có: \(A=\left(\dfrac{2}{x+2}-\dfrac{1}{x-3}+\dfrac{5-x}{x^2-x-6}\right)\cdot\left(x-\dfrac{6}{x-1}\right)\)
\(=\left(\dfrac{2\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}-\dfrac{x+2}{\left(x-3\right)\left(x+2\right)}+\dfrac{5-x}{\left(x-3\right)\left(x+2\right)}\right)\cdot\dfrac{x\left(x-1\right)-6}{x-1}\)
\(=\dfrac{2x-6-x-2+5-x}{\left(x+2\right)\left(x-3\right)}\cdot\dfrac{x^2-x-6}{x-1}\)
\(=\dfrac{-3}{x-1}\)
Bài 2:
10^n có tổng các chữ số là 1
5^3 có tổng các chữ số là 8
=>10^n+5^3 có tổng các chữ số là 9
=>10^n+5^3 chia hết cho 9
Ta thấy (2x+1).(y-5)=12
=> 2x+1 và y-5 thuộc Ư(12)
Ư(12)={1;2;3;4;6;12}
Ta thấy 2x+1 là số lẽ nên 2x+1=1;3
Ta có bảng:
2x+1 | 1 | 3 |
x | 0 | 1 |
y-5 là số chẵn nên y-5=2;4;6;12
Ta có bảng :
y-5 | 2 | 4 | 6 | 12 |
y | 7 | 9 | 11 | 17 |
Vậy x=0 hoặc 1
y=7;9;11 hoạc 17
k nha
do y>x>0 => \(5^y>5\Rightarrow5^y⋮5\)
Mặt khác, \(2^x,2^x+1,2^x+2,2^x+3,2^x+4\)là 5 số tự nhiên liên tiếp và \(2^x\)không tận cùng bằng 0
=> \(2^x\)+1 hoặc \(2^x\)+3 chia hết cho 5
=> VT \(⋮\)5
Mà 11879 không chia hết cho 5
=> không tồn tại x,y thỏa mãn
Để 24 \(⋮\)x - 1
<=> x - 1 \(\inƯ\left(24\right)=\left\{1;2;3;4;6;8;12;24;-1;-2;-3;-4;-6;-8;-12;-24\right\}\)
<=> \(x\in\left\{0;2;3;4;5;7;9;13;25\right\}\)(vì \(x\inℕ\))
mà x < 5 => \(x\in\left\{0;2;3;4\right\}\)
có cái nịt