chứng minh
A=73^1997+37^1993 chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn đi tìm chữ số tận cùng của 1993^1999 và 5557^1997 là xong
Áp dụng quy tắc tìm số tận cùng ta có:
16281997 sẽ có tận cùng là M8
1292 sẽ có tận cùng là N2
Như vậy 16281997 +12921997 chia hết cho 10 ( vì chữ số tận cùng của tổng này sẽ là 0 )
1. Ta có 2112 =(213)4 = 92614. Vì 54 < 9261 nên 544 < 92614
Vậy 544 < 2112.
( cách này chỉ áp dụng với một số trường hợp, trương hợp số lớn hơn thì khó làm !!!)
ta có
\(73^{1997}=\left(73^4\right)^{499}.73\)
Ta có 73^4 luôn có tận cùng là 1
=>(73^4)^499 cũng luôn có tận cùng là 1
=>73^1996 . 73 luôn có tận cùng la 3
Ta lại có
\(37^{1993}=\left(37^4\right)^{498}.37\)
Ta có
34^4 có tận cùng là 1. =>(34^4)^498 cũng có tận cùng là 1
=>37^1992.73 có tận cung là 7
=>73^1997+37^1993 có tận cùng là...3+...7=...0 chia hết cho 10