Cho tam giác ABC cân tại A .Trên cạnh AB lấy M ,AC lấy N sao cho AM=AN
a ) cm BCMN là hthang cân
b ) Trên cạnh BC lấy D,E sao cho BD=CE< \(\frac{BC}{2}\)CM .MNED là hthang cân
c ) MD cắt NE tại Q cm tam giác MNQ và DEQ cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBMC và ΔCNB có :
BM=CN ( AB=AC; AM=AN )
góc B = góc C ( ΔABC cân tại A )
BC : chung
suy ra : hai Δ trên bằng nhau theo trường hợp ( c-g-c )
suy ra : đpcm
b) chứng minh EBC cân nha em
Từ : ΔBMC = ΔCNB
suy ra : góc MCB = góc NBC ( 2 góc tương ứng )
suy ra : đpcm
c) ta có : ΔABC cân tại A
suy ra : góc B = góc C= \(\dfrac{180-A}{2}\) (1)
ta lại có : ΔAMN cân tại A
suy ra : góc AMN = góc ANM = \(\dfrac{180-A}{2}\) (2)
Từ (1) và (2) suy ra đpcm do (các góc ở vị trí đồng vị và bằng nhau )
a: Kẻ DH và EK lần lượt vuông góc với BC
=>DH//EK
H,B lần lượt là hình chiếu của D,B trên BC
=>HB là hình chiếu của DB trên BC
K,C lần lượt là hình chiếu của E,C trên BC
=>KC là hình chiếu của EC trên BC
Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
DB=EC
góc DBH=góc ECK
=>ΔDHB=ΔEKC
=>BH=KC và DH=EK
b: Xét ΔABE và ΔACD có
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
c: Xét ΔMDB và ΔMEC có
góc MDB=góc MEC
DB=EC
góc MBD=góc MCE
=>ΔMDB=ΔMEC
d: Xét ΔABM và ΔACM có
AM chung
MB=MC
AB=AC
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
Ta có: \(AB=AC.BD=CE\) ⇒ \(AD=AE\)
⇒ △ ADE cân tại A
⇒ \(\widehat{ADE}=\dfrac{180-A}{2}\) \(\left(1\right)\)
Ta có: △ ABC cân tại A
⇒ \(\widehat{B}=\dfrac{180-A}{2}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(\widehat{B}=\widehat{D}\)
Mà ta thấy 2 góc này ở vị trí đồng vị nên suy ra DE // BC
Xét ΔABC có
\(\dfrac{BD}{AB}=\dfrac{CE}{AC}\)
nên DE//BC