\(B=\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{x-1}{x+\sqrt{x}+1}\)
Tìm đkxđ
Rút gọn B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
a, dk \(x\ge0.x\ne1\)
\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)
=\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)
phan b,c ban tu lam not nhe dai lam mk ko lam dau mk co vc ban rui
\(ĐKXĐ:\hept{\begin{cases}\sqrt{x}-1\ne0\\x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)
\(B=\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{x-1}{x+\sqrt{x}+1}\)
\(=\left(\frac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{x+\sqrt{x}+1}{x-1}\)
\(=\left(\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right).\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)}.\frac{1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{1}{x-1}\)