K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|\overrightarrow{CH}+\overrightarrow{CH}\right|=a\)

NV
15 tháng 9 2021

\(\left|\overrightarrow{AM}\right|=AM=\dfrac{a\sqrt{3}}{2}\)

17 tháng 6 2017

\(=\dfrac{4\sqrt{3}}{2}=2\sqrt{3}\)

ΔABC đều có BM là đường trung tuyến

nên BM là phân giác của góc ABC và BM\(\perp\)AC

BM là phân giác của góc ABC

=>\(\widehat{ABM}=\widehat{CBM}=\dfrac{\widehat{ABC}}{2}=30^0\)

M là trung điểm của AC

=>\(AM=MC=\dfrac{AC}{2}=\dfrac{a}{2}\)

ΔAMB vuông tại M

=>\(AM^2+BM^2=AB^2\)

=>\(BM^2=AB^2-AM^2=a^2-\left(0,5a\right)^2=0,75a^2\)

=>\(BM=\dfrac{a\sqrt{3}}{2}\)

Gọi K là trung điểm của AM

=>\(KA=KM=\dfrac{AM}{2}=0,25a\)

ΔBMK vuông tại M

=>\(BM^2+MK^2=BK^2\)

=>\(BK^2=\left(0,25a\right)^2+\left(\dfrac{a\sqrt{3}}{2}\right)^2=\dfrac{13}{16}a^2\)

=>\(BK=\dfrac{a\sqrt{13}}{4}\)

Xét ΔBAM có BK là đường trung tuyến

nên \(\overrightarrow{BA}+\overrightarrow{BM}=2\cdot\overrightarrow{BK}\)

=>\(\left|\overrightarrow{BA}+\overrightarrow{BM}\right|=2\cdot BK=2\cdot\dfrac{a\sqrt{13}}{4}=\dfrac{a\sqrt{13}}{2}\)

29 tháng 7 2021

chánnnnnnnnnnnnnnnnnnnnn

AH
Akai Haruma
Giáo viên
1 tháng 3 2021

Lời giải:

\(\overrightarrow{AC}.\overrightarrow{BI}=(\overrightarrow{AM}+\overrightarrow{MC})(\overrightarrow{BM}+\overrightarrow{MI})\)

\(=\overrightarrow{AM}.\overrightarrow{BM}+\overrightarrow{AM}.\overrightarrow{MI}+\overrightarrow{MC}.\overrightarrow{BM}+\overrightarrow{MC}.\overrightarrow{MI}\)

\(=\overrightarrow{AM}.\overrightarrow{MI}+\overrightarrow{MC}.\overrightarrow{BM}\)

\(=\overrightarrow{AM}.\frac{-\overrightarrow{AM}}{2}+\frac{\overrightarrow{BC}}{2}.\overrightarrow{BC}=\frac{BC^2-AM^2}{2}\)

\(=\frac{BC^2-(\frac{\sqrt{3}}{2}BC)^2}{2}=\frac{BC^2}{8}=\frac{9a^2}{8}\)