Cho đoạn thẳng BC và 1 điểm D nắm giữa B và C. Về cùng một nửa mặt phẳng bờ chứa BC vẽ các tam giác đều BDE và CDF. Gọi P và Q lần lượt là trung điểm của BF và CE.
CMR: Tam giác PDQ đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Góc BDF=góc EDC=1200
Tam giác BDF = tam giác EDC (c-g-c) do đó BF = CE
Vì BF = CE mà P là Trung điểm của BF, Q là Trung điểm của CE
Tam giác BDF = tam giác EDC theo trên , do đó:
góc PED = góc QCD
tam giác PED = tam giác QCD ( c-g-c ) => DP=DQ và góc PDE = góc QCD, do đó
góc PDQ = goc PDF+ goc FDQ= góc FDQ+ góc QDC= góc FDC = 600
Tam giác PDQ có DP = DQ và góc PDQ = 60 0 nên là tam giác đều.
sợ ma mắng, ko nói nữa ~~