K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

a/ Tọa độ A là nghiệm của hệ

\(\hept{\begin{cases}y=-2x+3\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1,5\\y=0\end{cases}}\)

=> A(1,5; 0)

Tọa độ B là nghiệm của hệ

\(\hept{\begin{cases}x=0\\y=-2x+3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}\)

=> B(0; 3)

Khoản cách từ O(0; 0) đến d

\(=\frac{\left|0-2×0-3\right|}{\sqrt{1^2+2^2}}=\frac{3}{\sqrt{5}}\)

b/ Khoản cách từ C(0; - 2) đến d là

\(d\left(C,d\right)=\frac{\left|-2+2×0-3\right|}{\sqrt{1^2+2^2}}=\frac{5}{\sqrt{5}}=\sqrt{5}\)

13 tháng 11 2016

A/ TỌA ĐỘ A THỎA \(\hept{\begin{cases}Y=0\\Y=-2X+3\end{cases}}\)\(\Rightarrow\Rightarrow A\left(\frac{3}{2},O\right)\)

TỌA ĐỘ B THỎA,\(\hept{\begin{cases}Y=-2X+3\\X=0\end{cases}}\)\(\Rightarrow B\left(0,3\right)\)

GOI H LA HINH CHIEU CUA O LEN (d) ap dung he thuc luong trong tam giac vuongOAB cho

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\Leftrightarrow\frac{1}{OH^2}=\frac{1}{\left(\frac{3}{2}\right)^2}+\frac{1}{3^2}\Rightarrow AH=\frac{3}{\sqrt{5}}\)

B/GỌI K LÀ HÌNH CHIẾU CỦA C LÊN (d) ta co\(\frac{OH}{CK}=\frac{OB}{OC}=\frac{3}{5}\Rightarrow CK=\frac{5}{3}OH=\sqrt{5}\)

(....20 NHA)

1 tháng 9 2023

* Giao điểm với trục Ox:

Ta có: -2x + 3 = 0

⇔ 2x = 3

⇔ x = 3/2

⇒ A(3/2; 0) là giao điểm với trục Ox

* Giao điểm với trục Oy:

x = 0 ⇔ y = 3

⇒ B(0; 3) là giao điểm với trục Oy

* Khoảng cách từ O(0; 0) tới (d):

Xét đồ thị:

loading... Ta có:

AB² = OA² + OB² (Pytago)

= (3/2)² + 3²

= 45/4

⇒ AB = 3√5/2

Khoảng cách từ O đến (d) là đoạn thẳng OH

Ta có:

OH.AB = OA.OB

⇒ OH = OA.OB : AB

= 3/2 . 3 : (3√5/2)

= 3/√5

1 tháng 9 2023

khoảng cách là \(\dfrac{3}{\sqrt{5}}\) 

a) Gọi (d): y=ax+b

Vì (d)//y=2x-3 nên \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)

Vậy: (d): y=2x+b

Vì (d) đi qua điểm C(-1;4) nên 

Thay x=-1 và y=4 vào (d), ta được:

\(2\cdot\left(-1\right)+b=4\)

hay b=6

Vậy: (d): y=2x+6

Thay y=0 vào (d), ta được:

2x+6=0

hay x=-3

Vậy: A(-3;0)

b) Vì y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{-4}{5}+4=\dfrac{-4}{5}+\dfrac{20}{5}=\dfrac{16}{5}\end{matrix}\right.\)

6 tháng 7 2021

Tính góc tạo bởi đường thẳng BC và trục hoành Ox đi

a) Gọi (d): y=ax+b

Vì (d)//y=2x-3 nên ta có: \(\left\{{}\begin{matrix}a=2\\b\ne-3\end{matrix}\right.\)

=> (d): y=2x+b

Thay x=-1 và y=4 vào (d), ta được:

\(2\cdot\left(-1\right)+b=4\)

\(\Leftrightarrow b=6\)

Vậy: (D): y=2x+6

Thay y=0 vào (d),ta được:

\(2x+6=0\)

\(\Leftrightarrow x=-3\)

Vậy: A(-3;0)

b) Vì đồ thị hàm số y=ax+b đi qua hai điểm B(4;0) và C(-1;4) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-4\\-a+b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=4+a=4+\dfrac{-4}{5}=4-\dfrac{4}{5}=\dfrac{16}{5}\end{matrix}\right.\)

Vậy: \(a=-\dfrac{4}{5}\)\(b=\dfrac{16}{5}\)

c) Độ dài đoạn thẳng AB là:

\(AB=\sqrt{\left(-3-4\right)^2+\left(0-0\right)^2}=7\)(cm)

Độ dài đoạn thẳng AC là:

\(AC=\sqrt{\left(-3+1\right)^2+\left(0-4\right)^2}=2\sqrt{5}\left(cm\right)\)

Độ dài đoạn thẳng BC là:

\(BC=\sqrt{\left(4+1\right)^2+\left(0-4\right)^2}=\sqrt{41}\left(cm\right)\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC\)

\(=7+2\sqrt{5}+\sqrt{41}\)

\(\simeq17,9\left(cm\right)\)

5 tháng 7 2021

Còn thiếu tính góc tạo bởi đường thẳng BC và trục Ox mà bạn

a: Tọa độ A là:

y=0 và -2x+2=0

=>x=1 và y=0

=>A(1;0)

Tọa độ B là:

x=0 và y=-2x+2

=>x=0 và y=-2*0+2=2

=>B(0;2)

b: C thuộc Ox nên C(x;0)

D thuộc Oy nên D(0;y)

ABCD là hình thoi nên AB=AD và vecto AB=vecto DC

A(1;0); B(0;2); C(x;0); D(0;y)

\(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{DC}=\left(x;-y\right)\)

\(AB=\sqrt{\left(0-1\right)^2+\left(2-0\right)^2}=\sqrt{5}\)

\(AD=\sqrt{\left(0-1\right)^2+\left(y-0\right)^2}=\sqrt{y^2+1}\)

vecto AB=vecto DC

=>x=-1 và -y=2

=>x=-1 và y=-2

AB=AD

=>y^2+1=5

=>y^2=4

=>y=2(loại) hoặc y=-2(nhận)

Vậy: x=-1 và y=-2

=>C(-1;0); D(0;-2)

Gọi phương trình (d2) có dạng là y=ax+b

(d2) đi qua C và D nên ta có hệ phương trình:

a*(-1)+b=0 và 0*a+b=-2

=>b=-2 và -a=-b=2

=>a=-2 và b=-2

=>y=-2x-2

c: (d1): y=-2x+2 và (d2): y=-2x-2

loading...

 

19 tháng 12 2021

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x-1=-x+3\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)