Cho tam giác ABC có ba góc nhọn. Kẻ AH vuông góc với BC, lấy điểm D sao cho AB vuông góc với HD tại trung điểm HD, lấy điểm E sao cho AC vuông góc với HE tại trung điểm HE. Gọi I, K lần lượt là giao điểm DE với AB, AC. CMR HA là tia phân giác của góc IHK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, AB là trung trực của HD (gt) => AH = AD (đn)
AC là trung trực của EH (gt) => AE = AH (đn)
=> AD = AE mà A nằm giữa D và E
=> A là trung điểm của DE (đn)
b, HN _|_ AC (gt)
AB _|_ AC do tam giác ABC vuông tại A (gt)
AB và HN phân biệt
=> HN // AB (tc)
=> góc AMH + góc NHM = 180 (trong cùng phía)
mà góc AMH = 90 do HM _|_ AB (gt)
=> góc NHM = 180 - 90 = 90
=> tam giác DHE vuông tại H (đn)
c. xét tam giác AHB và tam giác ADB có : AH = AD (câu a)
AB chung
HB = BD do thuộc đường trung trực của HD (gt)
=> tam giác AHB = tam giác ADB (c-c-c)
=> góc AHB = góc ADB (đn)
mà AH _|_ BC (gt) => góc AHB = góc AHC = 90 (đn)
=> góc ADB = 90
xét tam giác CEA và tam giác CHA có : AC chung
AE = AH (Câu a)
EC = HC do C thuộc đường trung trực của EH (gt)
=> tam giác CEA = tam giác CHA (C-C-C)
=> góc CEA = góc CHA
mà góc CHA = 90 (Cmt)
=> góc CEA = 90
góc ADB = 90 (cmt)
=> góc CEA + góc ADB = 90 + 90 = 180
mà 2 góc này trong cùng phía
=> CD// CE(tc)
Vẽ nháp bằng tay, hình không đẹp cho lắm :v Bài viết có hơi lỗi.
Bài toán phụ : Chứng minh tam giác vuông có 1 góc 60 độ thì cạnh góc vuông nhỏ hơn sẽ bằng 1 nửa cạnh huyền.
Tam giác MNP vuông tại M có góc N là 60 độ.
Trên tia đối tia MN lấy điểm Q sao cho MQ=MN
Tam giác NPQ có PM vừa là trung tuyến vừa là đường cao nên cân tại P, mà lại có 1 góc 60 độ nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều), từ đó suy ra NQ = NP, mà NQ= 2MN nên MN = \(\frac{1}{2}\)NP, bài toán được chứng minh.
Tương tự với bài toán của chúng ta :
\(\Delta ABC\)vuông tại Acó \(\widehat{B}=60^o\) \(\Rightarrow AB=\frac{1}{2}BC\)
\(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\) \(\Rightarrow HB=\frac{1}{2}AB\)
\(\Rightarrow HB=\frac{1}{4}BC\)
Trước hết \(\Delta ABH\) vuông tại H có \(\widehat{B}=60^o\)
nên \(\widehat{HAB}=90^o-60^o=30^o\)Mà \(\widehat{DAH}+\widehat{HAB}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{DAH}=60^o\)
\(\Delta DAH\)cân tại A ( AD = AH ), có góc DAH là 60o nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều )
Như vậy AI là đường cao đồng thời cũng là phân giác góc DAH
\(\Rightarrow\widehat{IAH}=\frac{1}{2}\widehat{DAH}=\frac{60^o}{2}=30^o\)
\(\Rightarrow\widehat{KAB}=\widehat{IAH}+\widehat{HAB}=30^o+30^o=60^o\)
\(\Delta KAB\)có \(\widehat{KAB}=\widehat{KBA}=60^o\) nên là tam giác đều
\(\Rightarrow KB=AB\)
Mà \(HB=\frac{1}{2}AB\Rightarrow HB=\frac{1}{2}KB\), hay H là trung điểm của KB.
Vậy ....
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
HB=HE
Do đó: ΔAHB=ΔAHE
b: Xét tứ giác ABDE có
H là trung điểm của AD
H là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: DE//AB
c: Xét ΔEAD có
EH là đường cao
EH là đường trung tuyến
Do đó: ΔEAD cân tại E
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
DO đó: ΔCAD cân tại C
Xét ΔEAC và ΔEDC có
EA=ED
EC chung
AC=DC
Do đó: ΔEAC=ΔEDC
Suy ra: \(\widehat{EAC}=\widehat{EDC}\)
GT,KL tự viết (hình cũng tự vẽ)
a, Xét △AHB và △AHE có :
AH : chung
\(\widehat{AHB}=\widehat{AHE}(=90^o)\)
HB = HE (GT)
=> △AHB = △AHE (c.g.c)
b, Xét △AHB và △DHE có :
AH = DH(GT)
\(\widehat{AHB}=\widehat{DHE}(=90^o)\)
BH = EH (GT)
=> △AHB = △DHE (c.g.c)
=> \(\widehat{HAB}=\widehat{HDE}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> DE // AB
c, Xét △AHC và △DHC có :
HC : chung
\(\widehat{AHC}=\widehat{DHC}(=90^o)\)
AH = DH (GT)
=> △AHC = △DHC (c.g.c)
=> AC = DC (2 cạnh tương ứng)
\(\widehat{ACH}=\widehat{DCH}\) (2 góc tương ứng)
Xét △EAC và △EDC có :
EC : chung
\(\widehat{ECA}=\widehat{ECD}(cmt)\)
AC = DC (cmt)
=> △EAC = △EDC (c.g.c)
=> \(\widehat{EAC}=\widehat{EDC}\) (2 góc tương ứng)
d, Vì MN // AD => \(\dfrac{ME}{DE}=\dfrac{MN}{AD}\)
Xét △MEN và △DEA có :
\(\dfrac{ME}{DE}=\dfrac{MN}{AD} (cmt)\)
\(\widehat{EMN}=\widehat{EDA}( so le)\)
=> △MEN = △DEA (c.g.c)
=> \(\widehat{MEN}=\widehat{DEA}\) (2 góc tương ứng)
Mà 2 góc ở vị trí đối đỉnh với nhau
=> A , E , N thẳng hàng
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
HB=HE
Do đó: ΔAHB=ΔAHE
b: Xét tứ giác ABDE có
H là trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
c: Xét ΔCAD có
CH vừa là đường cao, vừa là đường trung tuyến
Do đó: ΔCAD cân tại C
=>CA=CD
Xét ΔEAD có
EH là đường cao, là đường trung tuyến
Do đó: ΔEAD cân tại E
=>EA=ED
Xét ΔCAE và ΔCDE có
CA=CD
AE=DE
CE chung
Do đó; ΔCAE=ΔCDE
=>\(\widehat{EAC}=\widehat{EDC}\)
d: Xét ΔNEA và ΔMED có
\(\widehat{NEA}=\widehat{MED}\)
EA=ED
\(\widehat{NAE}=\widehat{MDE}\)
Do đó: ΔNEA=ΔMED
=>AN=MD
CN+NA=CA
CM+MD=CD
mà CA=CD và AN=MD
nên CN=CM
Xét ΔCAD có CN/NA=CM/MD
nên NM//AD
=>NM\(\perp\)BC
e: Xét tứ giác AIDK có
AI//DK
AI=DK
Do đó: AIDK là hình bình hành
=>AD cắt IK tại trung điểm của mỗi đường
mà H là trung điểm của AD
nên H là trung điểm của KI
=>K,H,I thẳng hàng