Tìm giá trị nhỏ nhất của các biểu thức :
4x^2 + 4x + 2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta thấy \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
\(\Rightarrow A\ge17,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
...
\(B=\left|x-2\right|+\left|x-6\right|+2017\)
\(=\left|x-2\right|+\left|6-x\right|+2017\)
Ta thấy \(\left|x-2\right|+\left|6-x\right|\ge\left|x-2+6-x\right|=4\)
\(\Rightarrow B\ge4+2017=2021\)
Dấu "=" xảy ra khi \(2\le x\le6\)
....
\(C=\left(2x+1\right)^{2020}-2019\)
Ta thấy \(\left(2x+1\right)^{2020}\ge0\)
\(\Rightarrow C=\left(2x+1\right)^{2020}-2019\ge-2019\)
Dấu "=" xảy ra khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
....
\(A=x^2+2y^2+2xy-4x+6y+2020\)
\(A=\left(x^2+y^2+2^2+2xy-4y-4x\right)+\left(y^2+10y+25\right)+1991\)
\(A=\left(x+y-2\right)^2+\left(y+5\right)^2+1991\ge1991\)
Vậy \(Min_A=1991\)khi \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-5\end{cases}}\hept{\begin{cases}x=7\\y=-5\end{cases}}\)
\(B=\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)+2016\)
\(B=\left(x+y\right)^2+\left(y-2\right)^2+2016\)
Vậy Min B =2016 <=> x=-2;y=2
ta có
\(A=4x^2+4x+11=4x^2+4x+1+10=\left(2x+1\right)^2+10\)
mà \(\left(2x+1\right)^2\ge0\forall x\Rightarrow A\ge10\) hay GTNN của A =10 khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
a) Giá trị lớn nhất:
\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)
Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)
Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)
do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)
Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)
\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)
Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)
nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)
do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)
Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)
b) Giá trị nhỏ nhất
\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)
Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)
nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)
Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)
\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)
vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)
nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)
Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)
a) Vì \(\left|4x-2\right|\ge0\forall x\)\(\Rightarrow\left|4x-2\right|+1\ge1\forall x\)
hay \(A\ge1\)
Dấu " = "xảy ra \(\Leftrightarrow4x-2=0\)\(\Leftrightarrow4x=2\)\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(minA=1\)\(\Leftrightarrow x=\frac{1}{2}\)
b) \(B=\left|x-2020\right|+\left|x-1\right|=\left|x-2020\right|+\left|1-x\right|\)
\(\Rightarrow B\ge\left|x-2020+1-x\right|=\left|-2019\right|=2019\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-2020\right)\left(1-x\right)\ge0\)
TH1: \(\hept{\begin{cases}x-2020\le0\\1-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\1\le x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\x\ge1\end{cases}}\Leftrightarrow1\le x\le2020\)
TH2: \(\hept{\begin{cases}x-2020\ge0\\1-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2020\\1\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2020\\x\le1\end{cases}}\)( vô lý )
Vậy \(minB=2019\)\(\Leftrightarrow1\le x\le2020\)
câu a) đề sai sai ,sửa đề : A = 4|x-2| + 1
a) A =4| x-2| + 1
Ta có : |x-2| min =0 khi x = 2
<=> 4|x-2| min = 0 khi x = 2
<=> ( 4 | x-2| + 1 )min =1 khi x = 2
Vậy Min của A = 1 ,khi x = 2
b) B= | x-2020| +| x-1| x
Ta có với mọi x , y \(\inℚ\)thì | x | + | y| \(\ge\left|x+y\right|\)với điều kiện x , y \(\ge0\)
Có B = | x - 2020 | + | x - 1 |
= | x - 2020 | + | 1 - x | \(\ge\left|x-2020+1-x\right|\)
= | - 2019 | = 2019
Vậy Min B = 2019 khi \(1\le x\le2020\)
Nếu đề a) ko sai thì chat riêng với mình nhé ,bạn chỉ cần dịch nhẹ chuột đến tên nik của mình ,xong nhấn nhắn tin là được !!!
4x2 +4x+2020
(2x)2+2.2x.1+12+2019=(2x+1)2+2019 nhỏ hơn hoăc bằng 0+2019 với mọi x