K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

4x2 +4x+2020

(2x)2+2.2x.1+12+2019=(2x+1)2+2019 nhỏ hơn hoăc bằng 0+2019 với mọi x

 
để biểu thức trên có giá trị nhỏ nhất là 2019  
khi (2x+1)2=0=>2x+1=0=>2x=1=>x=1/2
vậy để biểu thức trên có gtnn là 2019 khi x=1/2 
  
  
 
23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

16 tháng 3 2020

\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta thấy \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

\(\Rightarrow A\ge17,5\)

Dấu "=" xảy ra  \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

...
\(B=\left|x-2\right|+\left|x-6\right|+2017\)

\(=\left|x-2\right|+\left|6-x\right|+2017\)

Ta thấy \(\left|x-2\right|+\left|6-x\right|\ge\left|x-2+6-x\right|=4\)

\(\Rightarrow B\ge4+2017=2021\)

Dấu "=" xảy ra khi \(2\le x\le6\)

....

\(C=\left(2x+1\right)^{2020}-2019\)

Ta thấy \(\left(2x+1\right)^{2020}\ge0\)

\(\Rightarrow C=\left(2x+1\right)^{2020}-2019\ge-2019\)

Dấu "=" xảy ra khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

....

30 tháng 7 2019

\(A=x^2+2y^2+2xy-4x+6y+2020\)

\(A=\left(x^2+y^2+2^2+2xy-4y-4x\right)+\left(y^2+10y+25\right)+1991\)

\(A=\left(x+y-2\right)^2+\left(y+5\right)^2+1991\ge1991\)

Vậy \(Min_A=1991\)khi \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-5\end{cases}}\hept{\begin{cases}x=7\\y=-5\end{cases}}\)

1 tháng 6 2016

\(B=\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)+2016\)

\(B=\left(x+y\right)^2+\left(y-2\right)^2+2016\)

Vậy Min B =2016 <=> x=-2;y=2

NM
28 tháng 12 2021

ta có 

\(A=4x^2+4x+11=4x^2+4x+1+10=\left(2x+1\right)^2+10\)

mà \(\left(2x+1\right)^2\ge0\forall x\Rightarrow A\ge10\) hay GTNN của A =10 khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

28 tháng 7 2016

a) Giá trị lớn nhất:

\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)

Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)

Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)

do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)

Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)

Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)

Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)

b) Giá trị nhỏ nhất 

\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)

Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)

Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)

\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)

vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)

Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)

24 tháng 4 2020

a) Vì \(\left|4x-2\right|\ge0\forall x\)\(\Rightarrow\left|4x-2\right|+1\ge1\forall x\)

hay \(A\ge1\)

Dấu " = "xảy ra \(\Leftrightarrow4x-2=0\)\(\Leftrightarrow4x=2\)\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(minA=1\)\(\Leftrightarrow x=\frac{1}{2}\)

b) \(B=\left|x-2020\right|+\left|x-1\right|=\left|x-2020\right|+\left|1-x\right|\)

\(\Rightarrow B\ge\left|x-2020+1-x\right|=\left|-2019\right|=2019\)

Dấu " = " xảy ra \(\Leftrightarrow\left(x-2020\right)\left(1-x\right)\ge0\)

TH1: \(\hept{\begin{cases}x-2020\le0\\1-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\1\le x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2020\\x\ge1\end{cases}}\Leftrightarrow1\le x\le2020\)

TH2: \(\hept{\begin{cases}x-2020\ge0\\1-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2020\\1\ge x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2020\\x\le1\end{cases}}\)( vô lý )

Vậy \(minB=2019\)\(\Leftrightarrow1\le x\le2020\)

24 tháng 4 2020

câu a) đề sai sai ,sửa đề : A = 4|x-2| + 1 

a) A =4| x-2| + 1

Ta có : |x-2| min =0 khi x = 2 

<=> 4|x-2| min = 0 khi x = 2 

<=> ( 4 | x-2| + 1 )min =1 khi x = 2 

Vậy Min của A = 1 ,khi x = 2

b) B= | x-2020| +| x-1| x

Ta có với mọi x , y \(\inℚ\)thì | x | + | y| \(\ge\left|x+y\right|\)với điều kiện x , y \(\ge0\)

Có B = | x - 2020 | + | x - 1 | 

         = | x - 2020 | + | 1 - x | \(\ge\left|x-2020+1-x\right|\)

         = | - 2019 | = 2019 

Vậy Min B = 2019 khi \(1\le x\le2020\)

Nếu đề a) ko sai thì chat riêng với mình nhé ,bạn chỉ cần dịch nhẹ chuột đến tên nik của mình ,xong nhấn nhắn tin là được !!!