Gọi Bn là tập hợp các bội số của n trong N. Xác định tập hợp B2 giao B4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: B
B2 là tập hợp các số nguyên chia hết cho 2. B4 là tập hợp các số nguyên chia hết cho 4. Các số chia hết cho 4 chắc chắn phải chia hết cho 2, ngược lại các số chia hết cho 2 thì chưa chắc chia hết cho 4. Do đó B4 ⊂ B2 => B2 ∩ B4 = B4
Đáp án: D
B2 là tập hợp các số nguyên chia hết cho 2.
B3 là tập hợp các số nguyên chia hết cho 3.
B2 ∩ B3 là một tập hợp các số nguyên vừa thuộc B2, vừa thuộc B3 nghĩa là các phần tử này vừa chia hết cho 2 và vừa chia hết cho 3.
B2 ∩ B3 là một tập hợp các phần tử chia hết cho 6 . Do đó B2 ∩ B3 = B6
Đáp án: D
B3 là tập hợp các số nguyên chia hết cho 3.
B6 là tập hợp các số nguyên chia hết cho 6.
Các số chia hết cho 6 chắc chắn phải chia hết cho 3, ngược lại các số chia hết cho 3 thì chưa chắc chia hết cho 6.
Do đó B6 ⊂ B3 => B3 ∪ B6 = B3