K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2022

\(x\times4+\frac{1}{2}\times x=55,35\)

\(\Leftrightarrow x\times\left(4+\frac{1}{2}\right)=55,35\)

\(\Leftrightarrow x\times4,5=55,35\)

\(\Leftrightarrow x=55,35:4,5\)

\(\Leftrightarrow x=12,3\)

Vậy x= 12,3

10 tháng 3 2022

x.4+1/2.x=55,35
x.(4+1/2)=55.35
x.9/2=55,35
x=55,35:9/2
x=12,3
vì là máy ko có dấu nhân nên thay dấu nhân là dấu chấm

a: Ta có: \(M=\left(\dfrac{1}{2x-y}-\dfrac{-x^2+3y-2}{4x^2-y^2}-\dfrac{2}{2x+y}\right):\left(\dfrac{x^2+y^2}{4x^2-y^2}+1\right)\)

\(=\dfrac{2x+y+x^2-3y+2-4x+2y}{\left(2x-y\right)\left(2x+y\right)}:\dfrac{x^2+y^2+4x^2-y^2}{\left(2x-y\right)\left(2x+y\right)}\)

\(=\dfrac{x^2-2x+2}{5x^2}\)

c: Ta có: \(\left\{{}\begin{matrix}x^2-2x+2=\left(x-1\right)^2+1>0\forall x\\5x^2>0\forall xtmĐKXĐ\end{matrix}\right.\)

Do đó: M>0

a) Xét ΔOBH và ΔODA có 

OB=OD(gt)

\(\widehat{BOH}=\widehat{DOA}\)(hai góc đối đỉnh)

OH=OA(O là trung điểm của HA)

Do đó: ΔOBH=ΔODA(c-g-c)

Suy ra: \(\widehat{OHB}=\widehat{OAD}\)(hai góc tương ứng)

mà \(\widehat{OHB}=90^0\)(gt)

nên \(\widehat{OAD}=90^0\)

hay AH\(\perp\)AD(đpcm)

b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có

OA=OH(O là trung điểm của AH)

\(\widehat{AOE}=\widehat{HOC}\)(hai góc đối đỉnh)

Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(hai cạnh tương ứng)(1)

Ta có: ΔAOD=ΔHOB(cmt)

nên AD=HB(Hai cạnh tương ứng)(2)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra AD=AE

mà E,A,D thẳng hàng(gt)

nên A là trung điểm của DE

15 tháng 7 2021

) Xét ΔOBH và ΔODA có 

OB=OD(gt)

ˆBOH=ˆDOABOH^=DOA^(hai góc đối đỉnh)

OH=OA(O là trung điểm của HA)

Do đó: ΔOBH=ΔODA(c-g-c)

Suy ra: ˆOHB=ˆOADOHB^=OAD^(hai góc tương ứng)

mà ˆOHB=900OHB^=900(gt)

nên ˆOAD=900OAD^=900

hay AH⊥⊥AD(đpcm)

b) Xét ΔAOE vuông tại A và ΔHOC vuông tại H có

OA=OH(O là trung điểm của AH)

ˆAOE=ˆHOCAOE^=HOC^(hai góc đối đỉnh)

Do đó: ΔAOE=ΔHOC(Cạnh góc vuông-góc nhọn kề)

Suy ra: AE=HC(hai cạnh tương ứng)(1)

Ta có: ΔAOD=ΔHOB(cmt)

nên AD=HB(Hai cạnh tương ứng)(2)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(Hai cạnh tương ứng)(3)

Từ (1), (2) và (3) suy ra AD=AE

mà E,A,D thẳng hàng(gt)

nên A là trung điểm của DE

2 tháng 8 2021

d) Gọi x,y lần lượt là số mol Al, Fe

\(\left\{{}\begin{matrix}27x+56y=8,3\\1,5x+y=0,25\end{matrix}\right.\)

=> x=0,1 ; y=0,1

Kết tủa : Al(OH)3, Fe(OH)2 

Bảo toàn nguyên tố Al: \(n_{Al\left(OH\right)_3}=n_{Al}=0,1\left(mol\right)\)

Bảo toàn nguyên tố Fe: \(n_{Fe\left(OH\right)_2}=n_{Fe}=0,1\left(mol\right)\)

=> \(m=0,1.78+0,1.90=16,8\left(g\right)\)

Nung kết tủa thu được chất rắn : Al2O3 và FeO

Bảo toàn nguyên tố Al: \(n_{Al_2O_3}.2=n_{Al}\Rightarrow n_{Al_2O_3}=0,05\left(mol\right)\)

Bảo toàn nguyên tố Fe: \(n_{FeO}=n_{Fe}=0,1\left(mol\right)\)

=> \(a=0,05.102+0,1.72=12,3\left(g\right)\)

13 tháng 12 2021

 

Câu 1: 

a,MCD: R1//R2

\(R_{12}=\dfrac{R_1R_2}{R_1+R_2}=\dfrac{30\cdot20}{30+20}=12\left(\Omega\right)\)

b, MCD: R3nt(R1//R2)

\(R_{tđ}=R_3+R_{12}=30+12=42\left(\Omega\right)\)

Câu 2

a Điện trở và cường độ dòng điện tối đa mà biến trở đó có thể có

b,\(S=\dfrac{l\cdot\rho}{R}=\dfrac{100\cdot1,1\cdot10^{-6}}{200}=5,5\cdot10^{-7}\)

\(R=\sqrt{\dfrac{S}{\pi}}=\sqrt{\dfrac{5,5\cdot10^{-7}}{\pi}}=4,18\cdot10^{-4}\left(m\right)=0,418\left(mm\right)\)

 

13 tháng 11 2019

\(https://thienvanvietnam.org/index.php?option=com_content&view=arle&id=1687:nhat-thuc-va-nguyet-thuc-luon-xay-ra-theo-cap&catid=23&Itemid=147\)

link đó,bạn copy và xem nhé!