a, tìm x
(x-1)2+(2x-y-3)2+(y+z)2=0
b,(2x+3)1998+(3y-5)2000≤0
giải hộ mik nha mik tim cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x/3 = y/2 = z/5 = 2y/4 = 2y- z/4-5 = -3/-1 = 3
x/3 = 3 suy ra x=9 ; y/2 = 3 suy ra y=6 ; z/5 = 3 suy ra z=15
Vậy x=3 ; y=6 ; z=15
b) x/2 = y/2 suy ra x/6 = y/15 (nhân vs 3) ; y/3 = z/7 suy ra y/15 = z/35 (nhân vs 5) . Suy ra x/6 = y/15 = z/35
x/6 = y/15 = z/35 = 2x/12 = 3y/45 = 2x+ 3y- z/ 12+ 45- 35 = 22/22 =1
x/6 = 1 suy ra x=6 ; y/15 = 1 suy ra y=15 ; z/35 = 1 suy ra =35
Vậy x=6 ; y=15 ; z= 35
a) =2x - 3 =0
x = 3/2
b) (5x -1)2 = 0
5x - 1 = 0
x = 1/5
c) = ( x +3)2 = 0
x+3 = 0
x = -3
d) =(13+y)(13-y) = 0
y = 13; -13
e) xem lại đề bài này
1. 4x/6y=(2x+8)/(3y+11) <=> 12xy+44x=12xy+48y
<=> 44x=48y =>x/y=12/11
mình chỉ biết câu 1 thôi :v
Không chắc đâu:v
a) Ta luôn có \(\left(x-1\right)^2+\left(2x-y-3\right)^2+\left(y+z\right)^2\ge0\forall x,y,z\)
Để đẳng thức xảy ra tức là \(\left(x-1\right)^2+\left(2x-y-3\right)^2+\left(y+z\right)^2=0\) (theo đề bài)
Thì \(\left\{{}\begin{matrix}x=1\\y=2x-3=2.1-3=-1\\z=-y=1\end{matrix}\right.\)
Vậy...
b) Ta luôn có \(VT\ge0\) với mọi x, y. Mà theo đề bài \(VT\le0\)
Do vậy \(VT=0\Leftrightarrow\left(2x+3\right)^{1998}+\left(3y-5\right)^{2000}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{3}{2}\\y=\frac{5}{3}\end{matrix}\right.\)
Bài này của lớp 10 ?? Hơi lạ....