Điền đơn thức thích hợp vào dấu ...
\(\frac{-10y^2+180y-81}{...}+\left(y-9\right)+...=\left(...+...\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\({\left[ {{{\left( {\frac{{ - 2}}{3}} \right)}^2}} \right]^5} = {\left( {\frac{{ - 2}}{3}} \right)^{2.5}} = {\left( {\frac{{ - 2}}{3}} \right)^{10}}\)
Vậy dấu “?” bằng 10.
b) \({\left[ {{{\left( {0,4} \right)}^3}} \right]^3} = {\left( {0,4} \right)^{3.3}} = {\left( {0,4} \right)^9}\)
Vậy dấu “?” bằng 9.
c) \({\left[ {{{\left( {7,31} \right)}^3}} \right]^0} = 1\)
Vậy dấu “?” bằng 1.
a) Ta có:
\({\left( {\frac{1}{3}} \right)^2}.{\left( {\frac{1}{3}} \right)^2} = \frac{1}{3}.\frac{1}{3}.\frac{1}{3}\frac{1}{3} = {\left( {\frac{1}{3}} \right)^4}\)
b)
\({\left( {0,2} \right)^2}.{\left( {0,2} \right)^3} = \left( {0,2.0,2} \right).\left( {0,2.0,2.0,2} \right) = {\left( {0,2} \right)^5}\)
a) Ta có: 27\(x^3\)+ y\(^3\) = (3x)\(^3\) + y\(^3\)= (3x + y)[(3x)\(^2\) – 3x . y + y\(^2\)] = (3x + y)(9x\(^2\) – 3xy + y\(^2\))
Nên: (3x + y) (9x\(^2\) – 3xy + y\(^2\)) = 27x\(^3\) + y\(^3\)
b) Ta có: 8x\(^3\) – 125 = (2x)\(^3\) – 53= (2x – 5)[(2x)\(^2\) + 2x . 5 + 5\(^2\)]
= (2x – 5)(4x\(^2\) + 10x + 25)
Nên:(2x – 5)(4x\(^2\) + 10x + 25)= 8x\(^3\) – 125
Trả lời:
a) Ta có:
27x3 + y3 = (3x)3 + y3= (3x + y)[(3x)2 – 3x . y + y2] = (3x + y)(9x2 – 3xy + y2)
Nên: (3x + y) (9x2 – 3xy + y2 ) = 27x3 + y3
b) Ta có:8x3 - 125 = (2x)3 - 53= (2x - 5)[(2x)2 + 2x . 5 + 52]
= (2x - 5)(4x2 + 10x + 25)
Nên: (2x - 5)(4x2+ 10x +25 ) = 8x3 - 125
a) (-2)+ (-5) = -7
Vì: -7< -5
=> (-2)+ (-5) < -7
b) (-3)+ (-8)= -11
Vì: (-10) > (-11)
=> -10> (-3)+ (-8)
1, \(\frac{1}{2}-\left(6\frac{5}{9}+x-\frac{117}{8}\right):\left(12\frac{1}{9}\right)=0\)
\(\left(\frac{6.9+5}{9}+x-\frac{117}{8}\right):\frac{12.9+1}{9}=\frac{1}{2}\)
( . là nhân nha)
\(\left(\frac{59}{9}-\frac{117}{8}+x\right):\frac{109}{9}=\frac{1}{2}\)
\(\frac{59}{9}-\frac{117}{8}+x=\frac{1}{2}\cdot\frac{109}{9}\)
\(\frac{59}{9}-\frac{117}{8}+x=\frac{109}{18}\)
\(x=\frac{109}{18}-\frac{59}{9}+\frac{117}{8}\)
\(x=\frac{113}{8}\)
( \(\left(y+\frac{1}{3}\right)+\left(y+\frac{2}{9}\right)+\left(y+\frac{1}{27}\right)+\left(y+\frac{1}{81}\right)=\frac{56}{81}\)
\(y+\frac{1}{3}+y+\frac{2}{9}+y+\frac{1}{27}+y+\frac{1}{81}=\frac{56}{81}\)
\(4y+\frac{1}{3}+\frac{2}{9}+\frac{1}{27}+\frac{1}{81}=\frac{56}{81}\)
\(4y+\frac{49}{81}=\frac{56}{81}\)
\(4y=\frac{7}{81}\)
y = 7/81:4
y = 7/324