Cho a, m ϵ N* và a >1. CMR: (\(\frac{a^m-1}{a-1}\), a - 1) = ( m, a - 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=\frac{a+1}{\sqrt{a}}+\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{a\sqrt{a}\left(\sqrt{a}-1\right)+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)
\(M=\frac{a+1}{\sqrt{a}}+\frac{a+\sqrt{a}+1}{\sqrt{a}}+\frac{\left(a\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-a\sqrt{a}}\)
\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)}\)
\(M=\frac{2a+\sqrt{a}+2}{\sqrt{a}}+\frac{a-\sqrt{a}+1}{\sqrt{a}}\)
\(M=\frac{3a+3}{\sqrt{a}}\)
Xét \(M-4=\frac{3a+3}{\sqrt{a}}-4=\frac{3a-4\sqrt{a}+3}{\sqrt{a}}=\frac{3\left(\sqrt{a}-\frac{2}{3}\right)^2+\frac{5}{3}}{\sqrt{a}}>0\forall x\in TXĐ\)
Vậy \(M>4.\)
b) \(N=\frac{6}{M}=\frac{6}{\frac{3a+3}{\sqrt{a}}}=\frac{2\sqrt{a}}{a+1}=\frac{2}{\sqrt{a}+\frac{1}{\sqrt{a}}}\)
Để N nguyên thì \(\sqrt{a}+\frac{1}{\sqrt{a}}\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Áp dụng bất đẳng thức Cosi cho hai số dương, ta có \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\Rightarrow\sqrt{a}+\frac{1}{\sqrt{a}}=2\)
\(\sqrt{a}+\frac{1}{\sqrt{a}}=2\Leftrightarrow a=1\) (Vô lý)
Vậy không tồn tại giá trị của a để N nguyên.
\(VT=\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\)
\(=1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\)
\(=3-\left(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\right)\)
Áp dụng bất đẳng thức Cauchy :
\(VT\ge3-\left(\frac{a^2}{2a}+\frac{b^2}{2b}+\frac{c^2}{2c}\right)=3-\left(\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)
\(=3-\frac{a+b+c}{2}=3-\frac{3}{2}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
\(ab+ac+bc\le a^2+b^2+c^2\\ \Rightarrow3\left(ab+ac+bc\right)\le a^2+b^2+c^2+2\left(ab+ac+bc\right)\\ \Rightarrow3\left(ab+ac+bc\right)\le\left(a+b+c\right)^2=9\\ \Rightarrow ab+ac+bc\le3\\ \Rightarrow2\left(ab+ac+bc\right)\le6\)
Áp dụng BDT Cô-si với 3 số dương:
\(\Rightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{9}{a^2+1+b^2+1+c^2+1}\\ =\frac{9}{a^2+b^2+c^2+3}=\frac{9}{a^2+b^2+c^2+6-3}\\ \ge\frac{9}{a^2+b^2+c^2+2\left(ab+ac+bc\right)-3}=\frac{9}{\left(a+b+c\right)^2-3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
cho a, b, c > 0 thỏa mãn a+b+c=3. Cmr:
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b\left(a+1\right)}{2}\)
Tương tự: \(\frac{b+1}{c^2+1}\ge b+1-\frac{c\left(b+1\right)}{2}\) ; \(\frac{c+1}{a^2+1}\ge c+1-\frac{a\left(c+1\right)}{2}\)
Cộng vế với vế:
\(VT\ge6-\frac{1}{2}\left(ab+bc+ca+a+b+c\right)\)
\(VT\ge\frac{9}{2}-\frac{1}{2}\left(ab+bc+ca\right)\ge\frac{9}{2}-\frac{1}{6}\left(a+b+c\right)^2=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Đề bài sai, phản ví dụ: \(a=b=c=\frac{1}{2}\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=3>\frac{1}{2}\) (t/m)
Nhưng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\ne1\)
Chắc người ta yêu cầu chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ; \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\) ; \(\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)
Cộng vế với vế:
\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge4.\frac{1}{2}=2\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
Dấu "=" xảy ra khi \(a=b=c=3\)