K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

a)x4+(x-4)4-82

=x4-81+(x-4)4-1

=((x2)2-92) + (x-4)2+1)(x-4)2-1)

=(x2-9)(x2+9)+(x-4)2+1)(x-4-1)(x-4+1)

=(x-3)(x+3)(x2+9)+(x-4)2+1)(x-5)(x-3)

=(x-3)[(x3+9x+3x2+27)+(x2-8x+14+1)(x-5)]

=(x-3)[(x3+9x+3x2+27)+(x3-5x2-8x2+40x+14x-70+x-5)]

=(x-3)(2x3-10x2+64x-48)

b)(x2-a)2-6x2+4x+2a

=[(x2-a)2-4x2]-[2x2+4x-2a]

=(x2-a-2x)-2(x2+2x+a)

=-(x2+a+2x)-2(x2+2x+a)

=-3(x2+2x+a)


 

10 tháng 8 2019

chú được đấy

6 tháng 12 2021

\(a,=4x^3\left(x+1\right)-x\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\\ =x\left(2x-1\right)\left(2x+1\right)\left(x+1\right)\\ b,=\left(a-1\right)^2-\left(b-c\right)^2\\ =\left(a-1-b+c\right)\left(a-1+b-c\right)\\ c,=\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72\\ =\left(x^2-9x+17\right)^2-9-72\\ =\left(x^2-9x+17\right)^2-81=\left(x^2-9x+8\right)\left(x^2-9x+26\right)\\ =\left(x-1\right)\left(x-8\right)\left(x^2-9x+26\right)\)

Bài 1: 

a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(2x+1\right)\left(3-2x+5\right)\)

\(=\left(2x+1\right)\left(8-2x\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)

\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)

\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)

\(=\left(3x-2\right)\left(3x-6\right)\)

\(=3\left(3x-2\right)\left(x-2\right)\)

Bài 2: 

a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)

\(=\left(a-b\right)\left(2a-4b\right)\)

\(=2\left(a-b\right)\left(a-2b\right)\)

f: Ta có: \(x^2-6xy+9y^2+4x-12y\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-3y+4\right)\)

13 tháng 1 2024

Bài 1:

\(a,x^4+5x^2+9\\=(x^4+6x^2+9)-x^2\\=[(x^2)^2+2\cdot x^2\cdot3+3^2]-x^2\\=(x^2+3)^2-x^2\\=(x^2+3-x)(x^2+3+x)\)

\(b,x^4+3x^2+4\\=(x^4+4x^2+4)-x^2\\=[(x^2)^2+2\cdot x^2\cdot2+2^2]-x^2\\=(x^2+2)^2-x^2\\=(x^2+2-x)(x^2+2+x)\)

\(c,2x^4-x^2-1\\=2x^4-2x^2+x^2-1\\=2x^2(x^2-1)+(x^2-1)\\=(x^2-1)(2x^2+1)\\=(x-1)(x+1)(2x^2+1)\)

13 tháng 1 2024

Bài 2:

\(a,\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=120\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\cdot\left[\left(x+2\right)\left(x+3\right)\right]=120\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=120\) (1)

Đặt \(x^2+5x+5=y\), khi đó (1) trở thành:

\(\left(y-1\right)\left(y+1\right)=120\)

\(\Leftrightarrow y^2-1=120\)

\(\Leftrightarrow y^2=121\)

\(\Leftrightarrow\left[{}\begin{matrix}y=11\\y=-11\end{matrix}\right.\)

+, TH1: \(y=11\Leftrightarrow x^2+5x+5=11\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow x^2-x+6x-6=0\)

\(\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-6\end{matrix}\right.\left(\text{nhận}\right)\)

+, TH2: \(y=-11\Leftrightarrow x^2+5x+5=-11\)

\(\Leftrightarrow x^2+5x+16=0\)

\(\Leftrightarrow\left[x^2+2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]-\dfrac{25}{4}+16=0\)

\(\Leftrightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

Ta thấy: \(\left(x+\dfrac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}\ge\dfrac{39}{4}>0\forall x\)

Mà \(\left(x+\dfrac{5}{2}\right)^2+\dfrac{39}{4}=0\)

\(\Rightarrow\) loại

Vậy \(x\in\left\{1;-6\right\}\).

\(b,\) Đề thiếu vế phải rồi bạn.

NV
3 tháng 1 2024

a.

\(x^4+4=x^4+4x^2+4-4x^2\)

\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b.

\(x^3-9x^2+6x+16=\left(x^3-7x^2-8x\right)-\left(2x^2-14x-16\right)\)

\(=x\left(x^2-7x-8\right)-2\left(x^2-7x-8\right)\)

\(=\left(x-2\right)\left(x^2-7x-8\right)=\left(x-2\right)\left(x^2+x-8x-8\right)\)

\(=\left(x-2\right)\left[x\left(x+1\right)-8\left(x+1\right)\right]=\left(x-2\right)\left(x+1\right)\left(x-8\right)\)

c.

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+10+2\right)-24\)

\(=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10\right)^2-4\left(x^2+7x+10\right)+6\left(x^2+7x+10\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+10-4\right)+6\left(x^2+7x+10-4\right)\)

\(=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

19 tháng 11 2024

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

Câu 1: A

Câu 21: A

 

1 tháng 11 2021

\(16,A\\ 17,C\\ 18,A\\ 19,C\\ 20,A\\ 21,A\)

11 tháng 11 2021

từng câu 1 thôi:v

 

11 tháng 11 2021

a) x2-xy+5y-25
 = x(2-y)+ 5(y-2)
 = x(2-y)-5(2-y)
 = (x-5)(2-y)

10 tháng 12 2023

a) x² + 6x + 8

= x² + 2x + 4x + 8

= (x² + 2x) + (4x + 8)

= x(x + 2) + 4(x + 8)

= (x + 2)(x + 4)

b) 3x² - 2(x - y)² - 3y²

= (3x² - 3y²) - 2(x - y)²

= 3(x² - y²) - 2(x - y)²

= 3(x + y)(x - y) - 2(x - y)²

= (x - y)[3(x + y) - 2(x - y)]

= (x - y)(3x + 3y - 2x + 2y)

= (x - y)(x + 5y)

c) 4x² - 9y² + 4x - 6y

= (4x² - 9y²) + (4x - 6y)

= (2x - 3y)(2x + 3y) + 2(2x - 3y)

= (2x - 3y)(2x + 3y + 2)

d) x(x + 1)² + x(x - 5) - 5(x + 1)²

= [x(x + 1)² - 5(x + 1)²] + x(x - 5)

= (x + 1)²(x - 5) + x(x - 5)

= (x - 5)[(x + 1)² + x]

= (x - 5)(x² + 2x + 1 + x)

= (x - 5)(x² + 3x + 1)

e) 2xy - x² + 3y² - 4y + 1

= -x² + 2xy - y² + 4y² - 4y + 1

= -(x² - 2xy + y²) + (4y² - 4y + 1)

= -(x - y)² + (2y - 1)²

= (2y - 1)² - (x - y)²

= (2y - 1 - x + y)(2y - 1 + x - y)

= (3y - x - 1)(x + y - 1)

f) 4x¹⁶ + 81

= (2x⁸)² + 2.2x⁸.9 + 9² - 2.2x⁸.9

= (2x⁸ + 9)² - 36x⁸

= (2x⁸ + 9) - (6x⁴)²

= (2x⁸ + 9 - 6x⁴)(2x⁸ + 9 + 6x⁴)

= (2x⁸ - 6x⁴ + 9)(2x⁸ + 6x⁴ + 9)

11 tháng 11 2021

2.
a) 4x(x-1)-6x+6
= 4x(x-1)-6(x-1)
= (4x-6)(x-1)
3.
a) 6x2-24x=0
    6x(x-4)=0
TH1: 6x=0         TH2: x-4=0
           x=0                     x=4
Vậy x\(\in\){0;4}

11 tháng 11 2021

2. a. \(4x\left(x-1\right)-6x+6\)

\(=4x\left(x-1\right)-6\left(x-1\right)\)

\(=\left(4x-6\right)\left(x-1\right)\)

3. a. \(6x^2-24x=0\)

\(\Leftrightarrow6x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)