K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

Từ đề bài suy ra \(\frac{1}{a+1}\ge\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự với hai bđt kia rồi nhân theo vế suy ra

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

Do a, b, c>0 nên (a+1)(b+1)(c+1) > 0 suy ra:

\(1\ge8abc\Leftrightarrow abc\le\frac{1}{8}\left(đpcm\right)\)

Đẳng thức xảy ra khi a = b = c = 1/2

DD
22 tháng 1 2021

\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\).

Tương tự ta có: \(\frac{1}{b+1}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\)\(\frac{1}{c+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\).

Nhân 3 bất đẳng thức trên theo vế ta được: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Leftrightarrow abc\le\frac{1}{8}\).

1 tháng 2 2019

\(\frac{1}{a^2}=\frac{1}{\left(bc\right)^2}\)

\(\Rightarrow\frac{1}{a^2}+1=\frac{1}{\left(bc\right)^2}+1\ge2\frac{1}{bc}=2a\)

1 tháng 2 2019

Bạn Hoàng sai rồi nhé: 

cho \(a=\frac{3}{2};b=2;c=\frac{1}{3}\) (t/m đk abc=1)

Suy ra \(a+b+c=\frac{3}{2}+2+\frac{1}{3}=3,8\left(3\right)>3\) nhé

4 tháng 10 2018

Ta có: \(\frac{1}{a+1}\ge2-\frac{1}{b+1}-\frac{1}{c+1}=\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)

Tương tự \(\frac{1}{b+1}\ge\frac{c}{c+1}+\frac{a}{a+1}\ge2\sqrt{\frac{ca}{\left(c+1\right)\left(a+1\right)}}\)

               \(\frac{1}{c+1}\ge\frac{a}{a+1}+\frac{b}{b+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)

Nhân từng vế, ta có: 

\(\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)

\(\Rightarrow abc\le\frac{1}{8}\)

2 tháng 10 2017

\(\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge\frac{2\sqrt{bc}}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)

hai cái kia tương tự rồi nhân cả ba cái lại ra được đpcm

26 tháng 1 2019

mik ví dụ 1 biểu thức nha

a(a+b+c)+bc/b+c=a^2+ab+ac+bc/b+c=(a+c)(a+b)/b+c

tương tự với mấy biểu thức còn lại

26 tháng 1 2019

cái bài này mik làm rồi mà giờ ko nhớ nữa

6 tháng 7 2016

Ta có 

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)

\(\Rightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

\(\Rightarrow\frac{1}{1+a}\ge\frac{1+b-1}{1+b}+\frac{1+c-1}{1+c}\)

\(\Rightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\le2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)( nhỏ hơn vậy do bất đẳng thức Cosy với 2 số)

tương tư ta chứng minh được

\(\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)

Nhân vế theo vế của 3 bất đẳng thức vừa chứng mình được 

\(\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}.2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}.2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}\)

\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc.\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}:\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc\)

\(\Rightarrow\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8abc\)

\(\Rightarrow1\ge8abc\Rightarrow\frac{1}{8}\ge abc\)

Ủng hộ cho mình 1 cái T I C K nha . Cảm ơn bạn rất nhiều

____________________________CHÚC BẠN HỌC TỐT NHA ________________________________

6 tháng 7 2016

Dấu "=" nữa Tùng ơi!

Cơ mà Linh k rùi, vất vả quá! :D

4 tháng 3 2019

câu 1.Ta có:

\(\frac{x^2}{x+3y}+\frac{x+3y}{16}\ge2\sqrt{\frac{x^2}{x+3y}.\frac{x+3y}{16}}=\frac{x}{2}\)

\(\frac{y^2}{y+3x}+\frac{y+3x}{16}\ge2\sqrt{\frac{y^2}{y+3x}.\frac{y+3x}{16}}=\frac{y}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{x+y+3x+3y}{16}\ge\frac{x+y}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{1}{4}\ge\frac{1}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}\ge\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\left(đpcm\right)\)

Câu 2:

điều kiện \(a^2+b^2+c^2+d^2=4\)(đúng ko)

Ta có:

\(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{1}{a^2+1}.\frac{a^2+1}{4}}=1\)

\(\frac{1}{b^2+1}.\frac{b^2+1}{4}\ge2\sqrt{\frac{1}{b^2+1}.\frac{b^2+1}{4}}=1\)

\(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge2\sqrt{\frac{1}{c^2+1}.\frac{c^2+1}{4}}=1\)

\(\frac{1}{d^2+1}+\frac{d^2+1}{4}\ge2\sqrt{\frac{1}{d^2+1}.\frac{d^2+1}{4}}=1\)

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}+\frac{a^2+b^2+c^2+d^2+4}{4}\ge4\)

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\ge4-\frac{8}{4}=2\left(đpcm\right)\)

4 tháng 3 2019

Bạn ơi 2 dòng cuối ở câu 2 mình chưa hiểu lắm, làm sao để mất \(a^2+b^2+c^2+d^2\)được vậy?