Cho đường thẳng d và hai điểm A, B cố định trên d. Một đường tròn (M) luôn tiếp xúc với d tại điểm I cố định sao cho những tiếp tuyến với ( M ) vẽ từ A và B song song với nhau. Chứng minh rằng điểm M di động trên đường tròn cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Chú ý: A M O ^ = A I O ^ = A N O ^ = 90 0
b, A M B ^ = M C B ^ = 1 2 s đ M B ⏜
=> DAMB ~ DACM (g.g)
=> Đpcm
c, AMIN nội tiếp => A M N ^ = A I N ^
BE//AM => A M N ^ = B E N ^
=> B E N ^ = A I N ^ => Tứ giác BEIN nội tiếp => B I E ^ = B N M ^
Chứng minh được: B I E ^ = B C M ^ => IE//CM
d, G là trọng tâm DMBC Þ G Î MI
Gọi K là trung điểm AO Þ MK = IK = 1 2 AO
Từ G kẻ GG'//IK (G' Î MK)
=> G G ' I K = M G M I = M G ' M K = 2 3 I K = 1 3 A O không đổi (1)
MG' = 2 3 MK => G' cố định (2). Từ (1) và (2) có G thuộc (G'; 1 3 AO)
Gọi S là trung điểm của đoạn OM, H là hình chiếu của S trên DE. Khi đó khoảng cách từ S đến DE là SH.
Ta sẽ chỉ ra SH = const, thật vậy: Do BM,CM là các tiếp tuyến tại B,C của (O) nên ^OBM = ^OCM (=900)
=> Tứ giác BOCM nội tiếp (OM). Ta cũng có: ^MEC = ^BAC (Vì ME // AB)
Theo tính chất góc tạo bởi tiếp tuyến và dây có ^BAC = ^MBC. Do đó ^MEC = ^MBC
=> Tứ giác MCEB nội tiếp. Tương tự, tứ giác MBDC nội tiếp
Từ đó sáu điểm B,D,O,E,C,M cùng thuộc đường tròn (OM) tâm là S => SD = SE = OM/2
Ta lại có OM2 = OC2 + CM2 = const (Vì O,C,M cố định) => SD = SE = const
Mặt khác ^DSE = 2^DME = 2^BAC = Sđ(BC = const => ^SDE = const => Sin^DSE = const
Hay \(\frac{SH}{SD}=const\). Mà SD không đổi nên SH không đổi => H cách S một khoảng không đổi
Ta thấy S cố định => (S;SH) cố định. Do DE vuông góc SH tại H nên DE luôn tiếp xúc với (S;SH) cố định (đpcm).
Đáp án:
Giải thích các bước giải:
Gọi G là trọng tâm của tgMBC => G trên MI và MG/IM = 2/3
Trên MN lấy điểm K sao cho MK/MN = 2/3 => Điểm K cố định và KG // NI vì MG/MI = MK/MN =2/3
=> ^MGK = ^MIN mà ^MIN không đổi (góc nội tiếp của đường tròn đk AO qua 5 điểm câu a)
=> G thuộc cung tròn cố định chứa ^MGK không đổi nhận MK là dây
Học tốt
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Gọi AC,BD lần lượt là tiếp tuyến kẻ từ A,B tới đường tròn (M). Theo giả thiết thì AC // BD.
Ta có AC vuông góc MC, AC // BD => MC vuông góc BD. Mà MD vuông góc BD nên C,M,D thẳng hàng
Suy ra CD là đường kính của (M) => ^CID chắn nửa đường tròn (M) => ^CID = 900
Hay IC vuông góc ID (1). Ta lại có AI,AC là tiếp tuyến từ A tới (M) => AM là trung trực của IC
=> AM vuông góc IC (2). Tương tự BM vuông góc ID (3)
Từ (1),(2),(3) suy ra MA vuông góc MB => ^AMB = 900 => M nằm trên đường tròn đường kính AB
Do A,B cố định nên đường tròn (AB) cố định. Vậy M luôn di động trên (AB) cố định (đpcm).
Lưu ý: Điểm I cố định hay di chuyển cũng không ảnh hưởng tới kết quả của bài toán.