1)Tìm giá trị nhỏ nhất hoặc giá trị nhỏ nhất của:
\(a)M=x^2+x+1 \)
\(b)N=3-2x-x^2\)
2)Cho \(a,b\in N\).Biết a chia cho 3 dư 1; b chia cho 3 dư 2. CMR: ab chia cho 3 dư 2
~Nhanh nha, mình đang cần gấp, cảm ơn mn!!!~
HELP ME,PLS!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé
https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)
b/
1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Suy ra Min A = 7 <=> x = 2
2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Suy ra Min B = 1/4 <=> x = 1/2
3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(\ge-\frac{9}{2}\)
Suy ra Min N = -9/2 <=> x = 1/2
Bài 1 :
Đề câu a) có thêm \(n\inℤ\)
a) \(A=n^2+n+3=n\left(n+1\right)+2+1\)
Ta thấy : \(n\left(n+1\right)⋮2,2⋮2\)
\(\Rightarrow n\left(n+1\right)+2⋮2\)
\(\Rightarrow n\left(n+1\right)+2+1⋮̸2\)
hay \(A⋮̸2\) ( đpcm )
b) Ta có : \(\left|2x-4\right|\ge0\forall x\)
\(\Rightarrow-\left|2x-4\right|\le0\forall x\)
\(\Rightarrow18-\left|2x-4\right|\le18\forall x\)
hay \(A\le18\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-4\right|=0\Leftrightarrow x=2\)
Vậy max \(A=18\) khi \(x=2\)
b1 :
a,n^2 + n + 3
= n(n + 1) + 3
n(n+1) là tích của 2 stn liên tiếp => n(n+1) chia hết cho 2
=> n(n+1) + 3 không chia hết cho 2
b, A = 18 - |2x - 4|
|2x - 4| > 0 => - |2x - 4| < 0
=> 18 - |2x - 4| < 18
=> A < 18
xét A = 18 khi |2x - 4| = 0
=> 2x - 4 = 0
=> x = 2
c, A = |5 - x| + 2015
|5 - x| > 0
=> |5 - x| + 2015 > 2015
=> A > 2015
xét A = 2015 khi |5 - x| = 0
=> 5 - x = 0 => x = 5
Bài 1:
a) \(M=x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4};\forall x\)
Hay \(M\ge\frac{3}{4};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(MIN\)\(M=\frac{3}{4}\)\(\Leftrightarrow x=\frac{-1}{2}\)
b) \(N=3-2x-x^2\)
\(=-x^2-2x+3\)
\(=-\left(x^2+2x+1\right)+4\)
\(=-\left(x+1\right)^2+4\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2+4\le0+4;\forall x\)
Hay \(N\le4;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy MAX \(N=4\)\(\Leftrightarrow x=-1\)
Bài 2:
Vì a chia 3 dư 1 nên a có dạng \(3k+1\left(k\in N\right)\)
Vì b chia 3 dư 2 nên b có dạng \(3t+2\left(t\in N\right)\)
Ta có: \(ab=\left(3k+1\right)\left(3t+2\right)\)
\(=\left(3k+1\right).3t+\left(3k+1\right).2\)
\(=9kt+3t+6k+2\)
\(=3.\left(3kt+t+2k\right)+2\)chia 3 dư 2 .
\(\)
1a) Ta có: M = x2 + x + 1 = (x2 + x + 1/4) + 3/4 = (x + 1/2)2 + 3/4
Ta luôn có: (x + 1/2)2 \(\ge\)0 \(\forall\)x
=> (x + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1/2 = 0 <=> x = -1/2
Vậy Mmin = 3/4 tại x = -1/2
b) Ta có: N = 3 - 2x - x2 = -(x2 + 2x + 1) + 4 = -(x + 1)2 + 4
Ta luôn có: -(x + 1)2 \(\le\)0 \(\forall\)x
=> -(x + 1)2 + 4 \(\le\)4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1 = 0 <=> x = -1
Vậy Nmax = 4 tại x = -1