K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

#)Giải :

\(\left(y+1\right)+\left(y+3\right)+\left(y+5\right)+...+\left(y+49\right)=700\)

\(\left(y+y+y+...+y\right)+\left(1+3+5+...+49\right)=700\)(có 25 số hạng trong các ngoặc)

\(25y+\frac{\left(49+1\right)25}{2}=700\)

\(25y+625=700\)

\(\Rightarrow25y=75\)

\(\Rightarrow y=3\)

3 tháng 7 2019

(y+1)+(y+3)+(y+5)+...+(y+49)=700

=>(y+y+y+...+y)+(1+3+5+...+49)=700

-> y=(49-1):2+1=25 số hạng

=>25y+[(49+1)×25÷2]=700

=>25y+625=700

=>25y=75

=>y=3

9 tháng 5 2022

y x ( 3/5 + 2/5 ) = 700
y x         ?          =700
y                        = 700 : ?
y                        = ?
tự lm đi nha tui giúp thế thui á

9 tháng 5 2022

y x ( 3/5 + 2/5 ) = 700
y x         1        =700
y                        = 700 : 1
y                        = 700

5 tháng 10 2021

a) \(\left(3x-5\right)\left(5-3x\right)+9\left(x+1\right)^2=30\)

\(\Rightarrow15x-9x^2-25+15x+9\left(x^2+2x+1\right)-30=0\)

\(\Rightarrow30x-9x^2-25+9x^2+18x+9-30=0\)

\(\Rightarrow48x-46=0\)

\(\Rightarrow x=\frac{23}{24}\)

b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Rightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)

\(\Rightarrow x^2+8x+16-x^2+1=16\)

\(\Rightarrow8x+17=16\)

\(\Rightarrow8x=-1\)

\(\Rightarrow x=\frac{-1}{8}\)

5 tháng 10 2021

c) \(\left(y-2\right)^3-\left(y-3\right)\left(y^2+3y+9\right)+6\left(y+1\right)^2=49\)

\(\Rightarrow\left(y-2\right)^3-\left(y^3-3^3\right)+6\left(y^2+2y+1\right)=49\)

\(\Rightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)

\(\Rightarrow\left(y^3-y^3\right)+\left(-6y^2+6y^2\right)+\left(12y+12y\right)+\left(-8+27+6\right)=49\)

\(\Rightarrow24y+25=49\)

\(\Rightarrow24y=24\)

\(\Rightarrow y=1\)

d) \(\left(y+3\right)^3-\left(y+1\right)^3=56\)

\(\Rightarrow\left(y+3-y-1\right)[\left(y+3\right)^2+\left(y+3\right)\left(y+1\right)+\left(y+1\right)^2]=56\)

\(\Rightarrow2\left(y^2+6y+9+y^2+4y+3+y^2+2y+1\right)=56\)

\(\Rightarrow3y^2+12y+13=28\)

\(\Rightarrow\left(3y^2+15y\right)-\left(3y+15\right)=0\)

\(\Rightarrow3y\left(y+5\right)-3\left(y+5\right)=0\)

\(\Rightarrow3\left(y-1\right)\left(y+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

20 tháng 7 2017

Tìm các số x, y, z biết:

a) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)\(x+y+z=49\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{x-1+y-2+z-3}{2+3+4}=\dfrac{49-6}{9}=\dfrac{43}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{43}{9}\\\dfrac{y-2}{3}=\dfrac{43}{9}\\\dfrac{z-3}{4}=\dfrac{43}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=\dfrac{86}{9}\\y-2=\dfrac{43}{3}\\z-3=\dfrac{172}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{95}{9}\\y=\dfrac{49}{3}\\z=\dfrac{199}{9}\end{matrix}\right.\)

Vậy \(x=\dfrac{95}{9};y=\dfrac{49}{3};z=\dfrac{199}{9}\)

b) \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)\(x+y+z=49\)

Đặt \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=k\left(k\ne0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2x=3k\\3y=4k\\4z=5k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3k}{2}\\y=\dfrac{4k}{3}\\z=\dfrac{5k}{4}\end{matrix}\right.\)

Theo giả thiết ta có: \(x+y+z=49\)

\(\Leftrightarrow\dfrac{3k}{2}+\dfrac{4k}{3}+\dfrac{5k}{4}=49\)

\(\Leftrightarrow\dfrac{18k+16k+15k}{12}=\dfrac{588}{12}\)

\(\Leftrightarrow18k+16k+15k=588\)

\(\Leftrightarrow49k=588\)

\(\Leftrightarrow k=12\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3.12}{2}=18\\y=\dfrac{4.12}{3}=16\\z=\dfrac{5.12}{4}=15\end{matrix}\right.\)

Vậy \(x=18;y=16;z=15\)

29 tháng 5 2016

1. y x 12 - y x 8 +y x 1 =15                     (y=yx1)

  (12-8+1) x y = 15

  5 x y = 15

y= 15:5

 y=3

2.       7 x y = 49-0

         7 x y = 49

             y = 49:7

            y= 7 

3.?????? sai đề àk

29 tháng 5 2016

3) phải cho kết quả = bn mới tính đc chú

cái này có thật là toán lớp 3 hay k thế

2 tháng 1 2023

\(a.16307:y=45\left(dư\text{ }17\right)\)\(\Leftrightarrow45\text{×}y+17=16307\)

\(45\text{×}y=16307-17\)

\(45\text{×}y=16290\)

\(y=16290:45\)

\(y=362\)

\(b.y\text{×}52+y\text{×}48=36700\)

\(y\text{×}\left(52+48\right)=36700\)

\(y\text{×}100=36700\)

\(y=36700:100\)

\(y=367\)

2 tháng 1 2023

a) 16307= 45*y+17 -> y=(16307-17)/45= 362
b) y*(52+48)= 36700 -> y=36700/100= 367

 

10 tháng 12 2016

a) \(\left(x-5\right)^2\cdot\left|y^2-81\right|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\y^2-81=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\y=+-9\end{cases}}}\)

b) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)

\(5y=2z\Leftrightarrow\frac{y}{2}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{z}{5}=\frac{3x+y-z}{9+2-5}=\frac{-360}{6}=-60\)

Tự tìm x,y,z nhé

c) \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{4}\Leftrightarrow\frac{y}{15}=\frac{z}{12}\)

(làm tương tự câu b)

d) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Leftrightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\left(..........\right)\)

đến đây chắc dễ rồi 

e) \(\frac{x}{5}=\frac{y}{4}\Leftrightarrow x=\frac{5y}{4}\)

Thay \(x=\frac{5y}{4}\)vào biểu thức x^2 - y^2 =1 

(tìm ra y sau đó thay y vào \(x=\frac{5y}{4}\)để tìm x) 

f) 

10 tháng 12 2016

nhìn cái đề thấy loạn cả mắt 

31 tháng 7 2023

\(\dfrac{4}{x}=\dfrac{y}{21}=\dfrac{28}{49}=\dfrac{28:7}{49:7}=\dfrac{4}{9}\\ Vậy:x=\dfrac{4.9}{4}=9\\ y=\dfrac{4.21}{9}=\dfrac{28}{3}\)

31 tháng 7 2023

\(\dfrac{x}{2}=\dfrac{3}{y}\\ \Leftrightarrow x.y=2.3=6\\ Vậy:\left[{}\begin{matrix}\left(x;y\right)=\left(1;6\right)=\left(6;1\right)\\\left(x;y\right)=\left(2;3\right)=\left(3;2\right)\end{matrix}\right.\)

9 tháng 12 2019

1) 22x + 1 = 32

=> 22x + 1 = 25

=> 2x + 1 = 5

=> 2x = 5 - 1

=> 2x = 4

=> x = 2

(2) 3.x3 - 100 = 275

=> 3x3 = 275 + 100

=> 3x3 = 375

=> x3 = 375 : 3

=> x3 = 125

=> x3 = 53

=> x = 5

(4) (x - 1)3 - 25 = 72

=> (x - 1)3 = 49 + 32

=> (x - 1)3 = 81

(xem lại đề)

5) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

  \(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-4}{-2}=2\)

=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{5}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.5=10\end{cases}}\)

Vậy ...

6) Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

       \(\frac{y}{5}=\frac{z}{4}\) => \(\frac{y}{15}=\frac{z}{12}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=\frac{-49}{37}\)

=> \(\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}}\) => \(\hept{\begin{cases}x=-\frac{49}{37}\cdot10=\frac{-490}{37}\\y=-\frac{49}{37}\cdot15=-\frac{735}{37}\\z=-\frac{49}{37}\cdot12=-\frac{588}{37}\end{cases}}\)

Vậy ...

mk lm bài mà mk cho là ''khó'' nhất thôi nha 

\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)và \(x+y+z=-49\)

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

ADTC dãy tỉ số bằng nhau ta có 

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=-\frac{49}{37}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{49}{37}.10=-\frac{490}{37}\\y=-\frac{49}{37}.15=-\frac{735}{37}\\z=-\frac{49}{37}.12=-\frac{588}{37}\end{cases}}}\)

a) \(\frac{-9}{x}=\frac{x}{-49}\Leftrightarrow x^2=\left(-9\right)\left(-49\right)=441\Leftrightarrow x=\pm21\)

b) \(\frac{x}{3}=\frac{y}{5};x+y=-16\). Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-16}{8}=-2\Rightarrow x=-6;y=-10\)

c) \(\frac{x}{2}=\frac{y}{-5};y-x=-14\). Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{-5}=\frac{y-x}{-5-2}=\frac{-14}{-7}=2\Leftrightarrow x=4;y=-10\)