K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:

Kẻ đường cao $AH$ của tam giác $ABC$.

Theo công thức lượng giác:

\(\tan B=\frac{AH}{BH}\Rightarrow AH=\tan B.BH=\tan 20^0.BH\)

\(\tan C=\frac{AH}{CH}\Rightarrow AH=\tan C.CH=\tan 30^0.CH\)

\(\Rightarrow \tan 20^0.BH=\tan 30^0.CH\)

\(\Rightarrow \frac{BH}{\tan 30^0}=\frac{CH}{\tan 20^0}=\frac{BH+CH}{\tan 30^0+\tan 20^0}=\frac{BC}{\tan 20^0+\tan 30^0}=\frac{6}{\tan 20^0+\tan 30^0}\) (tính chất dãy tỉ số bằng nhau)

\(\Rightarrow BH=\frac{6\tan 30^0}{\tan 20^0+\tan 30^0}\)

\(\Rightarrow AH=\tan 20^0.BH=\frac{6\tan 20^0\tan 30^0}{\tan 20^0+\tan 30^0}\)

Do đó $S_{ABC}=\frac{AH.BC}{2}=\frac{6.6\tan 20^0\tan 30^0}{2(\tan 20^0+\tan 30^0)}\aprrox 4(cm^2)$

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Hình vẽ:
Hệ thức lượng trong tam giác vuông

22 tháng 10 2019

H B A C 30 60 mm 20

Kẻ đường cao BH ⊥ AC tại H

Tam giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

=> \(\widehat{A}=180^o-20^o-30^o=130^o\)

Xét tam giác BHC vuông tại H có :

+) sin C = \(\frac{BH}{BC}\) <=> BH = \(BC.\sin30^o\) = 30 mm

+) cos C = \(\frac{CH}{BC}\) <=> CH = \(BC.\cos30^o\) = \(30\sqrt{3}\) mm

\(\widehat{BAC}+\widehat{BAH}=180^o\)

\(\widehat{BAC}=130^o\)

=> \(\widehat{BAH}=50^o\)

Xét tam giác ABH vuông tại H có :

tan A = \(\frac{BH}{AH}\) <=> AH = \(30\div\tan50^o\) \(\approx\) 25 mm

=> AC = HC - AH = \(30\sqrt{3}\) - 25 \(\approx\) 27 mm

=> \(S_{ABC}=\) \(\frac{BH.AC}{2}\) = 405 \(mm^2\)

24 tháng 10 2019

B C A D K

Đặt AB = c; AC = b = BD; BC = a . Hạ AK \(\perp BC\)(chỗ này chả biết chứng minh K khác D kiểu gì@@)

Ta có: Trong tam giác vuông, cạnh đối diện với góc 30o bằng nửa cạnh huyền. Do đó:\(AK=\frac{AB}{2}=\frac{c}{2}\)

\(KD=BD-BK=b-BK=b-\sqrt{c^2-AK^2}=b-\frac{\sqrt{3}}{2}c\) (thay cái phía trên vào)

Mà KD > 0 do đó \(b>\frac{\sqrt{3}}{2}c\)

Từ đây: \(AD=\sqrt{AK^2+KD^2}=\sqrt{b^2+c^2-\sqrt{3}bc}\) (1) (Thay hết vào thôi:v)

Lại có: \(DC=KC-KD=\sqrt{AC^2-AK^2}-\left(b-\frac{\sqrt{3}}{2}c\right)\)

\(=\sqrt{b^2-\frac{c^2}{4}}-\left(b-\frac{\sqrt{3}}{2}c\right)\) (2) 

Từ (1) và (2) ta cần chứng minh: \(\sqrt{b^2+c^2-\sqrt{3}bc}=\sqrt{b^2-\frac{c^2}{4}}-\left(b-\frac{\sqrt{3}}{2}c\right)\)

Nghĩ ra tới đây và thấy có gì đó sai sai, bác check giúp@@

a) Xét ΔABH vuông tại H và ΔACK vuông tại K có 

\(\widehat{BAH}=\widehat{CAK}\)(AK là tia phân giác của \(\widehat{BAC}\))

Do đó: ΔABH\(\sim\)ΔACK(g-g)

c) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{20}=\dfrac{CD}{25}\)

mà BD+CD=BC=30cm(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{20}=\dfrac{CD}{25}=\dfrac{BD+CD}{20+25}=\dfrac{30}{45}=\dfrac{2}{3}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{20}=\dfrac{2}{3}\\\dfrac{CD}{25}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{40}{3}\left(cm\right)\\CD=\dfrac{50}{3}\left(cm\right)\end{matrix}\right.\)

Vậy: \(BD=\dfrac{40}{3}cm;CD=\dfrac{50}{3}cm\)

23 tháng 11 2021

\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)

20 tháng 2 2019

Xét \(\Delta ADB\), có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=180^o\)

\(\Rightarrow\widehat{ADB}=180^o-\dfrac{1}{2}\widehat{BAC}-\widehat{B}\)

\(=180^o-\dfrac{1}{2}\left(180^o-\widehat{B}-\widehat{C}\right)-\widehat{B}\)

\(=180^o-\dfrac{1}{2}\left(180^o-\widehat{B}-\widehat{B}+30^o\right)-\widehat{B}\)

\(=180^o-\dfrac{1}{2}\left(210^o-2\widehat{B}\right)-\widehat{B}\)

\(=180^o-105^o=75^o\)