K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

\(\left(\frac{2}{3}\right)^{x+2}=\left(\frac{4}{9}\right)^4\)

\(\left(\frac{2}{3}\right)^{x+2}=\left[\left(\frac{2}{3}\right)^2\right]^4\)

\(\left(\frac{2}{3}\right)^{x+2}=\left(\frac{2}{3}\right)^8\)

\(\Rightarrow x+2=8\)

Vậy \(x=6\)

2 tháng 7 2019

#)Giải :

Ta có : \(\left(\frac{4}{9}\right)^4=\left[\left(\frac{2}{3}\right)^2\right]^4=\left(\frac{2}{3}^8\right)\)

\(\left(\frac{2}{3}\right)^{x+2}=\left(\frac{2}{3}\right)^8\)

\(\Leftrightarrow x+2=8\)

\(\Leftrightarrow x=6\)

11 tháng 11 2016

 đó chính là -4 minh khong muon giai ra ta lau lam ban

11 tháng 11 2016

rút 4 ra ngoài nhan bạn  4(2(x+1/x)^2+(x^2+1/x^2)^2-(x^2+1/x^2)(x+1/x)^2=(x+4)^2 

mik xét cái này cho dễ nhìn nhan 

2(x+1/x)^2-(x^2+1/x^2)(x+1/x)^2

= (x+1/x)^2(2-x^2-1/x^2)

= -(x+1/x)^2(x^2-2+1/x^2)

= -(x+1/x)^2(x-1/x)^2=-(x^2-1/x^2)^2

thế ở trên ta có 

4(-(x^2-1/x^2)^2+(x^2+1/x^2)^2)=(x+4)^2 

4(-x^4+2-1/x^4+x^4+2+1/x^4)=x^2+8x+16

4.4=x^2+8x+16 

suy ra x^2+8x=0 

x(x+8)=0

suy ra x=0 hoặc x=-8 

mak nhìn để bài thì x=0 ko được nên x=-8

14 tháng 7 2021

khong biet

10 tháng 3 2020

\(ĐKXĐ:x\ne\pm3\)

Đặt \(\frac{x+2}{x-3}=a;\frac{x-2}{x+3}=b\)

Ta có:

\(pt\Leftrightarrow3a^2+8ab=3b^2\)

\(\Leftrightarrow3a^2+8ab-3b^2=0\)

\(\Leftrightarrow\left(3a-b\right)\left(3b+a\right)=0\)

\(\Leftrightarrow3a=b;3b=-a\)

Đến đây bạn thay vào làm nhá,giải như pt bậc 2 thôi

26 tháng 1 2019

a, \(-\frac{2}{5}+\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=\frac{7}{6}\)

\(\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=\frac{47}{30}\)

\(\frac{3}{2}-\frac{4}{15}x=\frac{47}{50}\)

\(\frac{4}{15}x=\frac{14}{25}\)

\(x=\frac{21}{10}\)

27 tháng 7 2017

Bài 3:

a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)

Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN

Mà \(\left|2x-\frac{1}{5}\right|\ge0\)

Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi

\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)

b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)

Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)

Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN

mà \(x+\frac{1}{2}\ge0\)

Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)

Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)

và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)

Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2

Phần b này thì mình không chắc lắm bạn tự xem lại nhé

27 tháng 7 2017

Bài 1: 

\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))

=> 11 - x = 1

=> x = 10

Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)

10 tháng 3 2020

\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)

\(ĐKXĐ:x\ne\pm2\)

Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)

=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)

\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)

\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)

=>  \(b=0;a=0\)

Bạn cùng trường :">