Tìm x :
\(\left(\frac{2}{3}\right)^{x+2}=\left(\frac{4}{9}\right)^4\)
Làm đi mình tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rút 4 ra ngoài nhan bạn 4(2(x+1/x)^2+(x^2+1/x^2)^2-(x^2+1/x^2)(x+1/x)^2=(x+4)^2
mik xét cái này cho dễ nhìn nhan
2(x+1/x)^2-(x^2+1/x^2)(x+1/x)^2
= (x+1/x)^2(2-x^2-1/x^2)
= -(x+1/x)^2(x^2-2+1/x^2)
= -(x+1/x)^2(x-1/x)^2=-(x^2-1/x^2)^2
thế ở trên ta có
4(-(x^2-1/x^2)^2+(x^2+1/x^2)^2)=(x+4)^2
4(-x^4+2-1/x^4+x^4+2+1/x^4)=x^2+8x+16
4.4=x^2+8x+16
suy ra x^2+8x=0
x(x+8)=0
suy ra x=0 hoặc x=-8
mak nhìn để bài thì x=0 ko được nên x=-8
\(ĐKXĐ:x\ne\pm3\)
Đặt \(\frac{x+2}{x-3}=a;\frac{x-2}{x+3}=b\)
Ta có:
\(pt\Leftrightarrow3a^2+8ab=3b^2\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\)
\(\Leftrightarrow\left(3a-b\right)\left(3b+a\right)=0\)
\(\Leftrightarrow3a=b;3b=-a\)
Đến đây bạn thay vào làm nhá,giải như pt bậc 2 thôi
a, \(-\frac{2}{5}+\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=\frac{7}{6}\)
\(\frac{5}{3}\left(\frac{3}{2}-\frac{4}{15}x\right)=\frac{47}{30}\)
\(\frac{3}{2}-\frac{4}{15}x=\frac{47}{50}\)
\(\frac{4}{15}x=\frac{14}{25}\)
\(x=\frac{21}{10}\)
Bài 3:
a, Đặt \(A=\left|2x-\frac{1}{5}\right|+2017\)
Để A đạt GTNN thì \(\left|2x-\frac{1}{5}\right|\)đạt GTNN
Mà \(\left|2x-\frac{1}{5}\right|\ge0\)
Do đó \(\left|2x-\frac{1}{5}\right|=0\)thì A đạt GTNN tức là A = 0 + 2017 = 2017 khi
\(2x-\frac{1}{5}=0=>2x=0+\frac{1}{5}=\frac{1}{5}=>x=\frac{1}{5}.\frac{1}{2}=\frac{1}{10}\)
b, Đặt \(B=\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
Ta thấy \(\frac{1}{2}>\frac{1}{3}>\frac{1}{4}=>x+\frac{1}{2}>x+\frac{1}{3}>x+\frac{1}{4}\)
Do đó để B đạt GTNN thì \(x+\frac{1}{2}\)đạt GTNN
mà \(x+\frac{1}{2}\ge0\)
Từ 2 điều trên => \(x+\frac{1}{2}=0=>x=-\frac{1}{2}\)
Khi đó \(x+\frac{1}{3}=-\frac{1}{2}+\frac{1}{3}=-\frac{1}{6}\)
và \(x+\frac{1}{4}=-\frac{1}{2}+\frac{1}{4}=-\frac{1}{4}\)
Vậy GTNN của \(B=\left|0\right|+\left|-\frac{1}{6}\right|+\left|-\frac{1}{4}\right|=0+\frac{1}{6}+\frac{1}{4}=\frac{10}{24}\)khi x = -1/2
Phần b này thì mình không chắc lắm bạn tự xem lại nhé
Bài 1:
\(M=\frac{2017}{11-x}\)đạt GTLN <=> 11 - x đạt GTNN và 11 - x > 0 (nếu không thì M đạt giá trị âm (vô lí))
=> 11 - x = 1
=> x = 10
Vậy x = 10 thì M đạt GTLN tức là bằng \(\frac{2017}{1}=2017\)
\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)
\(ĐKXĐ:x\ne\pm2\)
Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)
=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)
\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)
=> \(b=0;a=0\)
Bạn cùng trường :">
\(\left(\frac{2}{3}\right)^{x+2}=\left(\frac{4}{9}\right)^4\)
\(\left(\frac{2}{3}\right)^{x+2}=\left[\left(\frac{2}{3}\right)^2\right]^4\)
\(\left(\frac{2}{3}\right)^{x+2}=\left(\frac{2}{3}\right)^8\)
\(\Rightarrow x+2=8\)
Vậy \(x=6\)
#)Giải :
Ta có : \(\left(\frac{4}{9}\right)^4=\left[\left(\frac{2}{3}\right)^2\right]^4=\left(\frac{2}{3}^8\right)\)
\(\left(\frac{2}{3}\right)^{x+2}=\left(\frac{2}{3}\right)^8\)
\(\Leftrightarrow x+2=8\)
\(\Leftrightarrow x=6\)