K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

\(\hept{\begin{cases}x+y=m\\x-y=n\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+y^2+2xy=m^2\\x^2+y^2-2xy=n^2\end{cases}\Leftrightarrow}4xy=m^2-n^2\Leftrightarrow xy=\frac{m^2-n^2}{4}\)

Ta có \(x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\)

                           \(=\left(x-y\right)\left[\left(x+y\right)^2-xy\right]\)

                            \(=n\left(m^2-\frac{m^2-n^2}{4}\right)\)

Rut gon not

DD
27 tháng 6 2021

a) \(\left(x+y\right)^2=x^2+y^2+2xy\Rightarrow4=10+2xy\Leftrightarrow xy=-3\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3+3.3.2=26\)

b) \(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow m^2=n-2xy\Leftrightarrow xy=\frac{n-m^2}{2}\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=m^3+3.m.\frac{n-m^2}{2}=\frac{3mn}{2}-\frac{m^3}{2}\)

11 tháng 7 2017

a) x2 + y2
= (x2 + 2xy + y2) - 2xy
= (x + y)2 - 2xy
=    m2 - 2n

b) x3 + y3
= (x + y)(x2 - xy + y2)
=     m  (x2 + 2xy + y2 - 3xy)
=     m   [(x + y)2 - 3xy]
=     m . [    m2 - 3n    ]

11 tháng 7 2017

cảm ơn bạn

6 tháng 8 2016

mình khuyên bạn nên đưa lên từng câu một thôi chứ bạn đưa lên dài thế này ai nhìn cũng khong muốn làm đâu nha

BẠN HÃY DÙNG Fx ĐỂ GHI CHO DỄ HIỂU NHÉ BẠN

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Điều kiện xác định của phân thức \(M\): \(y \ne 0\)

Điều kiện xác định của phân thức \(N\): \(xy + y \ne 0\) hay \(xy \ne  - y\)

Khi \(x = 3\), \(y = 2\) (thoả mãn điều kiện xác định), ta có:

\(M = \dfrac{3}{2}\)

\(N = \dfrac{{{3^2} + 3}}{{3.2 + 2}} = \dfrac{{9 + 3}}{{6 + 2}} = \dfrac{{12}}{8} = \dfrac{3}{2}\)

Vậy \(M = N = \dfrac{3}{2}\) khi \(x = 3\), \(y = 2\)

Khi \(x =  - 1\), \(y = 5\) (thỏa mãn điều kiện xác định của \(M\)) ta có:

\(M = \dfrac{{ - 1}}{5}\)

Vậy \(M = \dfrac{{ - 1}}{5}\) khi \(x =  - 1\), \(y = 5\)

Khi \(x =  - 1\), \(y = 5\) thì \(xy + y = \left( { - 1} \right).5 + 5 = 0\) nên không thỏa mãn điều kiện xác định của \(N\). Vậy giá trị của phân thức \(N\) tại \(x =  - 1\), \(y = 5\) không xác định.

b) Ta có:

\(x.\left( {xy + y} \right) = {x^2}y + xy\)

\(\left( {{x^2} + x} \right).y = {x^2}y + xy\)

Vậy \(x\left( {xy + y} \right) = \left( {{x^2} + x} \right)y\)

11 tháng 7 2017

\(\hept{\begin{cases}x+y=m\\x^2+y^2=n\end{cases}\Rightarrow x^2+2xy+y^2=m^2\Rightarrow xy=\frac{m^2-n}{2}}\)

P =\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=m.\left(n-\frac{m^2-2}{2}\right)\)

\(=m.\frac{3n-m^2}{2}=\frac{3mn-m^3}{2}\)

8 tháng 8 2017

( x+y)2= x2 +2xy+y2

=>   x2 +y2 =( x+y) -2xy

 Thay x+y =m và xy= n vào biểu thức , ta có:

            x2 +y2 =  m2 -2n

 Vậy nếu x+y =m và xy= n  thì   x2 +y2 =  m2 -2n.

18 tháng 9 2016

\(\left(x+y\right)^3=x^3+y^3+3x^2y+3xy^2\)

\(=>\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)

Mà x+y = 1 

\(=>\left(x+y\right)^3=1\)

Vậy \(N=x^3+y^3+3xy=1\)

Câu b làm tương tự bạn nhé !!

a,\(\left(x^3+y^3\right)=x^3+y^3+3x^2y+3xy^2\)

\(\Rightarrow\left(x^3+y^3\right)=x^3+y^3+3xy\left(x+y\right)\)

\(x+y=1\)

\(\Rightarrow\left(x^3+y^3\right)=1\)

Vậy \(N=x^3+y^3+3xy=1\)

Bạn tự làm tiếp nha

8 tháng 12 2016

Gọi Ư CLN của tử và mẫu là d => 3n+1 chia hết cho d, 5n+2 chia hết cho d . Sau đó nhân 3n+1 với 5 và 5n+2 với 3, rồi lấy mẫu trừ tử

=> 15n+6-(15n+5) chia hết cho d => 1 chia hết cho d => d=1=> (3n+1;5n+2)=1(ĐFCM)

8 tháng 12 2016

Bài 2: 

x=y+1 =>x-y=1

Ta có : 

(x-y)(x+y)(x2+y2)(x4+y4)= (x2-y2)(x2+y2)(x4+y4)

=(x4-y4)(x4+y4)=x8-y8 (ĐFCM)

Bài 1: 

e: Ta có: \(x\left(y-x\right)^2-x^2+2xy-y^2\)

\(=x\left(x-y\right)^2-\left(x-y\right)^2\)

\(=\left(x-y\right)^2\cdot\left(x-1\right)\)

Bài 2: 

a: Ta có: \(M=m^2\left(m+n\right)-n^2m-n^3\)

\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)

\(=\left(m+n\right)^2\cdot\left(m-n\right)\)

\(=\left(-2017+2017\right)^2\cdot\left(-2017-2017\right)\)

=0