Phân tích thành nhân tử:
\(x^4+2x^3-16x^2-2x+15\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= ( x3 + 2x2y + xy2 ) - 16x
= x (x2 + 2xy + y2) - 16x
= x( x + y)2 - 16x
= x [ ( x + y)2 - 16 ]
= x ( x + y +4) ( x + y - 4)
`@` `\text {Ans}`
`\downarrow`
`x^2 + 4x + 3`
`= x^2 + 3x + x + 3`
`= (x^2 + 3x) + (x + 3)`
`= x(x + 3) + (x + 3)`
`= (x+1)(x+3)`
____
`2x^2 + 3x - 5`
`= 2x^2 + 5x - 2x - 5`
`= (2x^2 - 2x) + (5x - 5)`
`= 2x(x - 1) + 5(x - 1)`
`= (2x + 5)(x - 1)`
____
`16x - 5x^2 - 3`
`= 15x + x - 5x^2 - 3`
`= (15x - 5x^2) + (x - 3)`
`= 5x(3 - x) + (x - 3)`
`= -5x(x - 3) + (x - 3)`
`= (1 - 5x)(x - 3)`
\(-5x^2+15x+x-3\) thì phải bằng \(-5x\left(x-3\right)+\left(x-3\right)\) chứ ạ
\(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy.\left(x^2-y^2-2y-1\right)\)
\(=2xy.[x^2-\left(y^2+2y+1\right)]\)
\(=2xy.[x^2-\left(y+1\right)^2]\)
\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)
Vậy chọn đáp án A
\(16x^2-2x-3\)
\(=16x^2-8x+6x-3\)
\(=8x\left(2x-1\right)+3\left(2x-1\right)\)
\(=\left(2x-1\right)\left(8x+3\right)\)
\(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
a: \(16x^3+0,25yz^3\)
\(=0,25\cdot x^3\cdot64+0,25\cdot yz^3\)
\(=0,25\left(64x^3+yz^3\right)\)
b: \(x^4-4x^3+4x^2\)
\(=x^2\cdot x^2-x^2\cdot4x+x^2\cdot4\)
\(=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)
c: \(x^3+x^2y-xy^2-y^3\)
\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\cdot\left(x+y\right)^2\)
d: \(x^3+x^2+x+1\)
\(=x^2\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+1\right)\)
e: \(x^4-x^2+2x-1\)
\(=x^4-\left(x^2-2x+1\right)\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)
f: \(2x^2-18\)
\(=2\cdot x^2-2\cdot9\)
\(=2\left(x^2-9\right)=2\left(x-3\right)\left(x+3\right)\)
g: \(x^2+8x+7\)
\(=x^2+x+7x+7\)
\(=x\left(x+1\right)+7\cdot\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)
h: \(x^4y^4+4\)
\(=x^4y^4+4x^2y^2+4-4x^2y^2\)
\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)
i: \(x^4+4y^4\)
\(=x^4+4x^2y^2+4y^4-4x^2y^2\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
k: \(x^2-2x-15\)
\(=x^2-5x+3x-15\)
\(=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)
\(x^4+2x^3-16x^2-2x+15\)
\(=x^4+5x^3-3x^3-15x^2-x^2-5x+3x+15\)
\(=x^3\left(x+5\right)-3x^2\left(x+5\right)-x\left(x+5\right)+3\left(x+5\right)\)
\(=\left(x+5\right)\left(x^3-3x^2-x+3\right)\)
\(=\left(x+5\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]\)
\(=\left(x+5\right)\left(x-3\right)\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+5\right)\)