K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,\sqrt{64}-\sqrt{16}+\sqrt{\left(-5\right)^2}\)

\(=8+4+5\)

\(=17\)

\(b,\sqrt{49}+\sqrt{4}-\sqrt{9}.\sqrt{144}\)

\(=7+2-3.12\)

\(=9-36\)

\(=-27\)

18 tháng 9 2019

d/ \(x=\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)

\(\Leftrightarrow x^3=3+\sqrt{9+\frac{125}{27}}+3-\sqrt{9+\frac{125}{27}}-3\left(\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\right)\sqrt[3]{3+\sqrt{9+\frac{125}{27}}}.\sqrt[3]{-3+\sqrt{9+\frac{125}{27}}}\)

\(\Leftrightarrow x^3=6-3x\sqrt[3]{9-9-\frac{125}{27}}\)

\(\Leftrightarrow x^3=6-5x\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+6\right)=0\)

\(\Leftrightarrow x=1\)

19 tháng 9 2019

c/

\(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{12}+4}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}\sqrt{2-\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}\)

\(=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)

\(=3-1=2\)

17 tháng 7 2019

1. a) 3+2=5

b) 0,5-0,1=0,4

c) 4/5-1/9=31/45

d) 2-0,6=1,4

2. a) 8-4+3=7

b) 11+5-3=13

c) 3/2-4/6-7-37/6

d) 4+5-6=3

17 tháng 7 2019

Mơn nhìu <3

a: Sửa đề: \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(=4-\sqrt{15}+\sqrt{15}=4\)

b: \(A=2-\sqrt{3}+\sqrt{3}-1=1\)

c: \(C=3\sqrt{5}-2-3\sqrt{5}-2=-4\)

d: Sửa đề: \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(=2\sqrt{5}+3-2\sqrt{5}+3\)

=6

7 tháng 7 2023

a) \(A=\sqrt{\left(4-\sqrt{15}\right)^2}+\sqrt{15}\)

\(A=\left|4-\sqrt{15}\right|+\sqrt{15}\)

\(A=4-\sqrt{15}+\sqrt{15}\)

\(A=4\)

b) \(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1-\sqrt{3}\right)}\)

\(B=\left|2-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)

\(B=2-\sqrt{3}-1+\sqrt{3}\)

\(B=1\)

c) \(C=\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)

\(C=\sqrt{\left(3\sqrt{5}\right)^2-2\cdot3\sqrt{15}\cdot2+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2\cdot3\sqrt{5}\cdot2+2^2}\)

\(C=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)

\(C=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|\)

\(C=3\sqrt{5}-2-3\sqrt{5}-2\)

\(C=-4\)

d) \(D=\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)

\(D=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-\sqrt{\left(2\sqrt{5}\right)^2-2\cdot2\sqrt{5}\cdot3+3^3}\)

\(D=\sqrt{\left(2\sqrt{5}+3\right)^2}-\sqrt{\left(2\sqrt{5}-3\right)^2}\)

\(D=\left|2\sqrt{5}+3\right|-\left|2\sqrt{5}-3\right|\)

\(D=2\sqrt{5}+3-2\sqrt{5}+3\)

\(D=6\)

25 tháng 10 2022

a: \(=2\cdot\dfrac{5}{4}-3\cdot\dfrac{7}{6}+4\cdot\dfrac{9}{8}=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{9}{2}=\dfrac{7}{2}\)

b: \(=18-16\cdot\dfrac{1}{2}+\dfrac{1}{16}\cdot\dfrac{3}{4}\)

=10+3/64

=643/64

c: \(=\dfrac{2}{3}\cdot\dfrac{9}{4}-\dfrac{3}{4}\cdot\dfrac{8}{3}+\dfrac{7}{5}\cdot\dfrac{5}{14}=\dfrac{3}{2}-2+\dfrac{1}{2}=2-2=0\)

21 tháng 10 2018

a) = \(\frac{7}{2}\)

b) = \(\frac{643}{64}\)

c) = 0

NV
25 tháng 6 2021

\(x=\dfrac{3\sqrt[3]{8-3\sqrt{5}}}{\sqrt[3]{57}}.\sqrt[3]{8+3\sqrt{5}}=\dfrac{3\sqrt[3]{\left(8-3\sqrt{5}\right)\left(8+3\sqrt[]{5}\right)}}{\sqrt[3]{57}}=\sqrt[3]{\dfrac{19}{57}}=\dfrac{1}{\sqrt[3]{3}}\)

\(y=\dfrac{\left(\sqrt[3]{3}+\sqrt[4]{2}\right)\left(\sqrt[3]{3}-\sqrt[4]{2}\right)}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\left(\sqrt[4]{2}-\sqrt[3]{81}\right)\left(\sqrt[4]{2}+\sqrt[3]{81}\right)}{\sqrt[4]{2}-\sqrt[3]{81}}\)

\(=\sqrt[3]{3}-\sqrt[4]{2}+\sqrt[4]{2}+\sqrt[3]{81}=\sqrt[3]{3}+3\sqrt[3]{3}=4\sqrt[3]{3}\)

\(T=xy=\dfrac{4\sqrt[3]{3}}{\sqrt[3]{3}}=4\)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 1$

PT $\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{3}{2}.\sqrt{9}.\sqrt{x-1}+24.\sqrt{\frac{1}{64}}.\sqrt{x-1}=-17$

$\Leftrightarrow \frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17$

$\Leftrightarrow -\sqrt{x-1}=-17$

$\Leftrightarrow \sqrt{x-1}=17$

$\Leftrightarrow x-1=289$

$\Leftrightarrow x=290$

b. ĐKXĐ: $x\geq \frac{1}{2}$

PT $\Leftrightarrow \sqrt{9}.\sqrt{2x-1}-0,5\sqrt{2x-1}+\frac{1}{2}.\sqrt{25}.\sqrt{2x-1}+\sqrt{49}.\sqrt{2x-1}=24$

$\Leftrightarrow 3\sqrt{2x-1}-0,5\sqrt{2x-1}+2,5\sqrt{2x-1}+7\sqrt{2x-1}=24$
$\Leftrightarrow 12\sqrt{2x-1}=24$

$\Leftrihgtarrow \sqrt{2x-1}=2$

$\Leftrightarrow x=2,5$ (tm)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

c. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{36}.\sqrt{x-2}-15\sqrt{\frac{1}{25}}\sqrt{x-2}=4(5+\sqrt{x-2})$

$\Leftrightarrow 6\sqrt{x-2}-3\sqrt{x-2}=20+4\sqrt{x-2}$

$\Leftrightarrow \sqrt{x-2}=-20< 0$ (vô lý)

Vậy pt vô nghiệm