Tìm giá trị lớn nhất của biểu thức:
A=-x2-5y2+2xy-4x+20y+13
B=-7x2-y2+4xy+16x-2y+17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)
a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
\(minA=2\Leftrightarrow x=3\)
b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)
\(minB=51\Leftrightarrow x=5\)
c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
a, xem lại đề
\(b,x^2-4x+y^2-6y+1\\ =\left(x^2-4x+4\right)+\left(y^2-6y+9\right)-12\\ =\left(x-2\right)^2+\left(y-3\right)^2-12\ge-12\)
Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy ...
\(c,x^2-4xy+5y^2-2y+5\\ =\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+4\\ =\left(x-2y\right)^2+\left(y-1\right)^2+4\ge4\)
Dấu "=" xảy ra\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy ...
a,
b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12b,x2−4x+y2−6y+1=(x2−4x+4)+(y2−6y+9)−12=(x−2)2+(y−3)2−12≥−12
Dấu "=" xảy ra⇔{x=2y=3⇔{x=2y=3
Vậy ...
c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4c,x2−4xy+5y2−2y+5=(x2−4xy+4y2)+(y2−2y+1)+4=(x−2y)2+(y−1)2+4≥4
Dấu "=" xảy ra⇔{x=2y=1⇔{x=2y=1
Vậy ...
A = x^2 + 5y^2 + 4xy - 2y - 3
= x^2 + 4xy + 4y^2 + y^2 - 2y + 1 - 4
= ( x + 2y )^2 + ( y - 1 )^2 - 4 >= -4
Dấu ''='' xảy ra khi y = 1 ; x = -2
Vậy GTNN A là -4 khi x = -2 ; y = 1
Đáp án C
G T ⇔ x 2 + y − 3 x + y 2 − 4 y + 4 = 0 y 2 + x − 4 y + x 2 − 3 x + 4 = 0
có nghiệm ⇔ Δ x ≥ 0 Δ y ≥ 0 ⇔ 0 ≤ x ≤ 4 3 1 ≤ y ≤ 7 3
Và:
x y = 3 x + 4 y − x 2 − y 2 − 4 ⇒ P = 3 x 3 + 18 x 2 + 45 x − 8 ⏟ f x + − 3 y 3 + 3 y 2 + 8 y ⏟ g y
Xét hàm số f x = 3 x 3 + 18 x 2 + 45 x − 8 trên 0 ; 4 3 ⇒ max 0 ; 4 3 f x = f 4 3 = 820 9
Xét hàm số g x = − 3 y 3 + 3 y 2 + 8 y trên 1 ; 7 3 ⇒ max 1 ; 7 3 g x = f 4 3 = 80 9
Vật P ≤ max 0 ; 4 3 f x + max 1 ; 7 3 g x = 100
Dấu “=” xảy ra khi x = y = 4 3
\(a,=5\left(x^2+2xy+y^2\right)-10y^2+5=5\left(x+y\right)^2-10y^2+5\\ =5\left(1+2\right)^2-10\cdot4+5=45-40+5=10\\ b,=7\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(7-x+y\right)\\ =\left(2-2\right)\left(7-2+2\right)=0\)
b: \(=7\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(7-x+y\right)=0\)
ko có 2x2 đâu mik thấy đề bài nó ghi như thế. bn giúp mik nhé!
a)
Ta có:
\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\)
\(\ge0-2=-2\)
Vậy \(A_{min}=-2\), đạt được khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)
b)\(B=4x^2+4x+8=4x^2+4x+1+7\)
\(=\left(2x+1\right)^2+7\ge0+7=7\)
Vậy \(B_{min}=7\), đạt được khi và chỉ khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)
c)
Ta có:
\(C=3x-x^2+2=2-\left(x^2-3x\right)\)
\(=2+\dfrac{9}{4}-\left(x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}\right)\)
\(=\dfrac{17}{4}-\left(x-\dfrac{3}{2}\right)^2\le\dfrac{17}{4}-0=\dfrac{17}{4}\)
Vậy \(C_{max}=\dfrac{17}{4}\), đạt được khi và chỉ khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)
d) Ta có:
\(D=-x^2-5x=-\left(x^2+5x\right)=\dfrac{25}{4}-\left(x^2+2x.\dfrac{5}{2}+\dfrac{25}{4}\right)\)
\(=\dfrac{25}{4}-\left(x+\dfrac{5}{2}\right)^2\le\dfrac{25}{4}-0=\dfrac{25}{4}\)
Vậy \(D_{max}=\dfrac{25}{4}\), đạt được khi và chỉ khi \(x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\)
e) Ta có:
\(E=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2+4y^2+5^2-4xy+10x-20y+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
\(\ge0+0+2=2\)
Vậy \(E_{min}=2\), đạt được khi và chỉ khi \(x-2y+5=y-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
\(A=-x^2-5y^2+2xy-4x+20y+13\)
\(=-x^2+2xy-y^2-4y^2-4x+4y+16y+13\)
\(=-\left(x^2-2xy+y^2\right)-\left(4y^2-16y+16\right)-\left(4x-4y\right)+29\)
\(=-\left(x-y\right)^2-4\left(y-2\right)^2-4\left(x-y\right)-4+25\)
\(=-\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]-4\left(y-2\right)^2+25\)
\(=-\left(x-y+2\right)^2-4\left(y-2\right)^2+25\)
\(A_{max}=25\Leftrightarrow\hept{\begin{cases}\left(x-y+2\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y+2=0\\y=2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
\(B=-7x^2-y^2+4xy+16x-2y+17.\)
\(=-4x^2+4xy-y^2-3x^2+12x-12+4x-2y+29\)
\(=-\left(2x-y\right)^2-3\left(x-2\right)^2+2\left(2x-y\right)^2-1+30\)
\(=-\left[\left(2x-y\right)^2-2\left(2x-y\right)^2+1\right]-3\left(x-2\right)^2+30\)
\(=-\left(2x-y-1\right)^2-3\left(x-2\right)^2+30\)
\(\Rightarrow B_{max}=30\Leftrightarrow\hept{\begin{cases}\left(2x-y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-y-1=0\\x=2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)