Tìm GTLN của biểu thức B = x2+17/x2+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
a: Ta có: \(A=x^2+3x+4\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
3A=3(x^2-x+1)/(x^2+x+1)
3A-1=(3x^2-3x+3)/(x^2+x+1)-1
3A-1=(3x^2-3x+3-x^2-x-1)/(x^2+x+1)
3A-1=(2x^2-4x+2)/(x^2+x+1)
3A-1=2(x-1)^2/(x^2+x+1)>=0
=>3A>=1
A>=1/3
=>GTNN của A là 1/3 khi x-1=0 hay x=1
A-3=(x^2-x+1)/(x^2+x+1)-3
A-3=(x^2-x+1-3x^2-3x-3)/(x^2+x+1)
A-3=(-2x^2-4x-2)/(x^2+x+1)
A-3=-2(x+1)^2/(x^2+x+1)<=0
=>A<=3
=>GTLN của A=3 khi x=-1
a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)
b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)
c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)
b: ta có: \(-x^2+5x+4\)
\(=-\left(x^2-5x-4\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
\(-x^2-y^2+xy+2x+2y=-\left[x^2-x\left(y+2\right)+\dfrac{1}{4}\left(y+2\right)^2\right]-\left(\dfrac{3}{4}y^2-3y+3\right)+4=-\left(x-\dfrac{1}{2}y-1\right)^2-\left(\dfrac{\sqrt{3}}{2}y-\sqrt{3}\right)^2+4\le4\)
\(max=4\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
a. \(4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Vậy GTLN của A = 7 khi x = 2
b. \(x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy GTLN của B = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)
\(B=\frac{x^2+17}{x^2+7}=\frac{x^2+7}{x^2+7}+\frac{10}{x^2+7}=1+\frac{10}{x^2+7}\)
để B đạt gtln thì 1/x^2 + 7 lớn nhất
=> x^2 + 7 nhỏ nhất
mà x^2 + 7 > 7
=> x^2 + 7 = 7
=> x^2 = 0
=> x = 0
tự thay vào tìm gtln
Ta thấy x^2 >= 0 => x^2 + 17 >= 17 ; x^2 + 7 >= 7
=> x^2 + 17/x^2 + 7 >= 17/7
Dấu "=" xảy ra <=> x^2 = 0 <=> x = 0
Vậy với x = 0 ta có GTNN của B là 17/7
Bạn sửa lại đề thành Tìm GTNN nhé