Tìm x:
\(4x^3-64x=0\)
Nhớ phân tích thành phân tử.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3x-4y-3y+4x\)
\(=3\left(x-y\right)+4\left(x-y\right)\)
\(=\left(3+4\right)\left(x-y\right)=7\left(x-y\right)\)
\(b,\left(a^3+2ab+b^2\right)-\left(a^3+b^3\right)\)
\(=a^3+2ab+b^2-a^3-b^3\)
\(=2ab+b^2-b^3\)
\(=b\left(2a+b-b^2\right)\)
\(c,48b^3-24b^2=3b\)
\(48b^3-24b^2-3b=0\)
\(b\left(48b^2-24b-3\right)=0\)
\(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)
Lời giải:
a.
$64x^2-24y^2=8(8x^2-3y^2)=8(\sqrt{8}x-\sqrt{3}y)(\sqrt{8}x+\sqrt{3}y)$
b.
$64x^3-27y^3=(4x)^3-(3y)^3=(4x-3y)(16x^2+12xy+9y^2)$
c.
$x^4-2x^3+x^2=(x^2-x)^2=[x(x-1)]^2=x^2(x-1)^2$
d.
$(x-y)^3+8y^3=(x-y)^3+(2y)^3=(x-y+2y)[(x-y)^2-2y(x-y)+(2y)^2]$
$=(x+y)(x^2-4xy+7y^2)$
a) \(64x^2-24y^2\)
\(=8\left(8x^2-3y^2\right)\)
b) \(64x^3-27y^3\)
\(=\left(4x\right)^3-\left(3y\right)^3\)
\(=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
c) \(x^4-2x^3+x^2\)
\(=x^2\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)^2\)
d) \(\left(x-y\right)^3+8y^3\)
\(=\left(x-y+2y\right)\left(x^2-2xy+y^2-2xy+2y^2+4y^2\right)\)
\(=\left(x+y\right)\left(x^2-4xy+7y^2\right)\)
a) \(x^2+12x+35\)
\(=x^2+5x+7x+35\)
\(=\left(x^2+5x\right)+\left(7x+35\right)\)
\(=x\left(x+5\right)+7\left(x+5\right)\)
\(=\left(x+5\right)\left(x+7\right)\)
b)\(x^2-x-56\)
\(=x^2+7x-8x-56\)
\(=\left(x^2+7x\right)-\left(8x+56\right)\)
\(=x\left(x+7\right)-8\left(x+7\right)\)
\(=\left(x+7\right)\left(x-8\right)\)
c)\(5x^2-x-4\)
\(=5x^2-5x+4x-4\)
\(=\left(5x^2-5x\right)+\left(4x-4\right)\)
\(=5x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(5x+4\right)\)
TL:
a)\(x^2+5x+7x+35\)
=\(x\left(x+5\right)+7\left(x+5\right)\)
=\(\left(x+7\right)\left(x+5\right)\)
b) \(x^2-x-56\)
=\(x^2+7x-8x-56\)
=\(x\left(x+7\right)-8\left(x+7\right)\)
=\(\left(x-8\right)\left(x+7\right)\)
d)\(4x^4+1=\left(2x^2\right)^2+4x^2+1-4x^2\)
=\(\left(2x^2+1\right)^2-4x^2\)
=\(\left(2x^2+1+4x\right)\left(2x^2+1-4x\right)\)
.......................(tự lm)
hc tốt
\(4x^4+81=\left(2x\right)^2+2.2x^2.9+9^2-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
\(64x^4+y^4=\left(8x^2\right)^2+2.8x^2.y^2+\left(y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)
\(x^4+x^3+2x^2+x+1\\ =\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\\ =\left(x^2+1\right)\left(x^2+x+1\right)\)
\(4x^2-3x-1=0\\ \Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{4}\end{matrix}\right.\)
\(1,=8xy+14y^2-4xz-7yz\\ 2,=y\left(4x^2-12x+9\right)=y\left(2x-3\right)^2\\ 3,\Leftrightarrow\left(x+3\right)\left(x-2+x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Câu 1: \(\left(2y-z\right)\left(4x+7y\right)=8xy-4xz+14y^2-7yz\)
câu 2: \(4x^2y-12xy+9y=y\left(4x^2-12x+9\right)\)
câu 3: \(\left(x-2\right)\left(x+3\right)+x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-2+x\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2x-2\right)=0\\ \Leftrightarrow2\left(x+3\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
4x3 - 64x = 0
<=> 4x(x + 4)(x - 4) = 0
<=> \(\hept{\begin{cases}4x=0\\x+4=0\\x-4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=0\\x=-4\\x=4\end{cases}}\)
=> x = 0 hoặc x = -4 hoặc x = 4
\(4x^3-64x=0\)
\(\Rightarrow4x\left(x^2-16\right)=0\)
\(\Rightarrow4x\left(x+2\right)\left(x-2\right)=0\)
\(\Rightarrow4x=0\)hoặc \(x+2=0\) hoặc \(x-2=0\)
\(\Rightarrow x=0\)hoặc \(x=-2\) hoặc \(x=2\)
\(\Rightarrow x=\left\{0;\pm2\right\}\)