K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

\(x^4+9x^2=0\)

\(\Leftrightarrow x^2\left(x^2+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2+9=0\end{cases}}\)

\(\Leftrightarrow x^2=0\Rightarrow x=0\) vì \(x^2+9\ge9>0\forall x\)

=.= hk tốt!!

28 tháng 6 2019

#)Giải :

\(x^4+9x^2=0\left(1\right)\)

\(\Leftrightarrow x^2\left(x^2+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2+9=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2+9=0\left(2\right)\end{cases}}\)

Có \(x^2\ge0\forall x\)

Mâu thuẫn với (2)

=> (2) vô nghiệm

Vậy .........

P/s Nguồn : Giải phương trình x^4 + 9x^2=0 - Thu Hang - H7https://h7.net/hoi-dap/toan-9/giai-phuong-trinh-x-4-9x-2-0-faq299413.html

14 tháng 4 2017

a) Ta có:  Δ = 196 > 0     

Phương trình có 2 nghiệm  x 1 = 3 ,   x 2 = 1 5

b) Đặt  t = x 2 ,   t ≥ 0 , phương trình trở thành  t 2 + 9 t − 10 = 0

Giải ra được t=1 (nhận); t= -10 (loại)

Khi t=1, ta có  x 2 = 1 ⇔ x = ± 1 .

c)  3 x − 2 y = 10 x + 3 y = 7 ⇔ 3 x − 2 y = 10         ( 1 ) 3 x + 9 y = 21       ( 2 )

(1) – (2) từng vế ta được: y=1

Thay y= 1 vào (1) ta được x= 4

Vậy hệ phương trình có nghiệm duy nhất là x= 4; y= 1.

8 tháng 2 2023

Theo đề:  \(2x+y=0\Leftrightarrow y=-2x\)    \(\left(1\right)\)

Ta có:   

\(\dfrac{3-x}{y-4}=\dfrac{2}{5}\)

\(\Leftrightarrow5\left(3-x\right)=2\left(y-4\right)\)

\(\Leftrightarrow15-5x=2y-8\)

\(\Leftrightarrow15+8=2y+5x\)

\(\Leftrightarrow5x+2y=23\)    \(\left(2\right)\)

Thế (1) vào (2), suy ra:

    \(5x+2.\left(-2x\right)=23\)

\(\Leftrightarrow5x-4x=23\)

\(\Leftrightarrow x=23\)

\(\Rightarrow y=-2.23=-46\)

13 tháng 1 2017

27 tháng 1 2022

\(\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}=\frac{12}{1-9x^2}\left(ĐKXĐ:x\ne\pm\frac{1}{3}\right)\)

<=> \(\frac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}=\frac{12}{\left(1-3x\right)\left(1+3x\right)}\)

=> \(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)

<=> \(\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)

<=> \(-12x=12\)

<=> \(x=-1\left(TMĐK\right)\)

Vậy: ...

27 tháng 1 2022

\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)

\(\Leftrightarrow\)\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)

\(\Rightarrow\)\(12=\left(1-3x\right)^2-\left(1+3x\right)^2\)

\(\Leftrightarrow\)\(12=\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)

\(\Leftrightarrow\)\(12=\left(-6x\right).2\)

\(\Leftrightarrow\)\(12=-12x\)

\(\Leftrightarrow\)\(x=-1\)

18 tháng 2 2022

a, \(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\left(9x^2-4\right)-\left(\left(3x+2\right)\left(x-1\right)\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-\left(3x^2-x-2\right)\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)=0;3x^2+x-2=0\)

=> x=-1  

với \(3x^2+x-2=0\)

ta sử dụng công thức bậc 2 suy ra : \(x=\dfrac{2}{3};x=-1\)

Vậy  ghiệm của pt trên \(S\in\left\{-1;\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

hay \(x\in\left\{1;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)

hay \(x\in\left\{1;-2;\dfrac{7}{5}\right\}\)

30 tháng 11 2021

a: \(\Leftrightarrow\left[{}\begin{matrix}2x-5=3-8x\\2x-5=8x-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}10x=8\\-6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

ĐK x >0

\(PT\Leftrightarrow2x+2\sqrt{x^2-\frac{1}{x^4}}=\frac{4}{x^2}.\)

\(\Leftrightarrow2\sqrt{x^2-\frac{1}{x^4}}=\frac{4}{x^2}-2x\)

\(\Leftrightarrow x^2-\frac{1}{x^4}=\frac{4}{x^4}-\frac{4}{x}+x^2\)(chia cả 2 vế cho 2)

\(\Leftrightarrow\frac{5}{x^4}-\frac{4}{x}=0\Leftrightarrow5-4x^3=0\Leftrightarrow4x^3=5\)

\(\Leftrightarrow x^3=\frac{5}{4}\Leftrightarrow x=\sqrt[3]{\frac{5}{4}}\)

Vậy................................