2. Cho x thỏa \(x^4-6x^2+11x^2-6x+1=0\) Tính \(A=\frac{2x^2-6x+1}{3x^2-9x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)
\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
PS: Điều kiện xác đinh bạn tự làm nhé
từ đề\(\Leftrightarrow\frac{x-1}{x\left(x-4\right)-5\left(x-4\right)}+\frac{2x-2}{x\left(x-2\right)-4\left(x-2\right)}+\frac{3x-3}{x\left(x+1\right)-2\left(x+1\right)}+\frac{4x-4}{x\left(x+1\right)+5\left(x+5\right)}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{2}{\left(x-2\right)\left(x-4\right)}+\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{4}{\left(x+1\right)\left(x+5\right)}=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{x-4}-\frac{1}{x-5}+\frac{1}{x-2}-\frac{1}{x-4}+\frac{1}{x-2}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x-5}\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{x-2}-\frac{2}{x-5}\right)=0\) vì \(\frac{2}{x-2}-\frac{2}{x-5}\)luôn khác 0 nên x-1=0 nên x=1.
Điều kiện xác định : x khác 4,5,2,-1. Do đó x=1 thỏa mãn. Vậy x=1
a: \(=\dfrac{x-2x-1}{x+1}=\dfrac{-\left(x+1\right)}{x+1}=-1\)
b: \(=\dfrac{2+2x}{x\left(x+1\right)}=\dfrac{2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2}{x}\)
c: \(=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)
đề sai
phải không
?????????
k sai nhé