Cho tam giác ABC vg tại A , đường cao AH , E, F lần lượt là hình chiếu của H lên AB và AC .CM:
a) BC2 = 3AH2 + BF2 + CF2
b) \(\frac{AB^2}{AC^2}\)= \(\frac{HB}{HC}\)
C) \(\frac{AB^3}{AC^3}\) = \(\frac{BE}{CF}\)
d) AH3 = BC. HE .HF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{HB}{HC}=\dfrac{HB.HC}{HC^2}=\dfrac{HA^2}{HC^2}=\left(\dfrac{HA}{HC}\right)^2\)
Xét \(\Delta AHC\) và \(\Delta BAC:\) Ta có: \(\left\{{}\begin{matrix}\angle AHC=\angle BAC=90\\\angle ACBchung\end{matrix}\right.\)
\(\Rightarrow\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\dfrac{HA}{HC}=\dfrac{AB}{AC}\)
\(\Rightarrow\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{c^2}{b^2}\)
b) tham khảo ở đây:https://hoc24.vn/cau-hoi/cho-dabc-vuong-tai-a-duong-cao-ah-goi-e-f-lan-luot-la-cac-hinh-chieu-cua-h-tren-ab-va-ac-cmra-aeabaf.1150118751274
a) Áp dụng hệ thức lượng trong tam giác vuông có:
\(AB^2=BH.BC\)
\(AC^2=CH.CB\)
\(\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{c^2}{b^2}\)
b) Áp dụng hệ thức lượng trong tam giác vuông có:
\(BH^2=BE.BA\)
\(CH^2=CF.CA\)
\(\Rightarrow\dfrac{BH^2}{CH^2}=\dfrac{BE}{CF}.\dfrac{BA}{CA}\)\(\Leftrightarrow\dfrac{c^4}{b^4}=\dfrac{BE}{CF}.\dfrac{c}{b}\)
\(\Leftrightarrow\dfrac{BE}{CF}=\dfrac{c^3}{b^3}\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:
\(BD\cdot BA=BH^2\)
\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(CE\cdot CA=CH^2\)
\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)
Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)
\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)
Theo định lí Pitago
Xét tam giác ABH vuông tại H => AB2 - HB2 = AH2
Xét tam giác ACH vuông tại H => AC2 - HC2 = AH2
=> AB2 - HB2 = AC2 - HC2=AH2
=> AB2 + HC2 = AC2 + HB2
Sorry mik chỉ làm được câu a thôi mong bn thôn g cảm
tu giác AEHF là hình chữ nhật
CF=AC-AF
BE=AB-AE
binh phuong công lai
AC^2+AB^2-2AE.AB-2AC.AF+AE^2+Af^2
AC^2+AB^2=BC^2
ae^2+af^2=ef^2=ah^2
AE.AB=AH^2
AF.AC=AH^2
thay vào VP=3AH^2+BC^2-2AH^2-2AH^2+AH^2=BC^2=VT
Vẽ hình
Câu hỏi của Lưu Như Ý - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo!