làm seo đễ nối ở máy tính cơ mọi người ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tập luyện viết nhanh nhớ tính giờ (cách nhanh nhất đó còn ai có mẹo nào thì chỉ giùm cái)
tập luyện viết nhanh nhớ tính giờ (cách nhanh nhất đó còn ai có mẹo nào thì chỉ giùm cái)
1.a
\(\lim\dfrac{3n^3+2n^2+n}{n^3+4}=\lim\dfrac{n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)}{n^3\left(1+\dfrac{4}{n^3}\right)}\)
\(=\lim\dfrac{3+\dfrac{2}{n}+\dfrac{1}{n^2}}{1+\dfrac{4}{n^3}}=\dfrac{3+0+0}{1+0}=3\)
b.
\(\lim\limits_{x\rightarrow3}\dfrac{x^2+2x-15}{x-3}=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+5\right)}{x-3}\)
\(=\lim\limits_{x\rightarrow3}\left(x+5\right)=8\)
2.
Ta có:
\(\lim\limits_{x\rightarrow5}f\left(x\right)=\lim\limits_{x\rightarrow5}\dfrac{x^2-25}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{\left(x-5\right)\left(x+5\right)}{x-5}\)
\(=\lim\limits_{x\rightarrow5}\left(x+5\right)=10\)
Và: \(f\left(5\right)=9\)
\(\Rightarrow\lim\limits_{x\rightarrow5}f\left(x\right)\ne f\left(5\right)\)
\(\Rightarrow\) Hàm gián đoạn tại \(x_0=5\)
24.
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x}-1}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{1}{\sqrt{x}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)
Hàm liên tục tại \(x=1\) khi:
\(\lim\limits_{x\rightarrow1}f\left(x\right)=f\left(1\right)\Rightarrow\dfrac{1}{2}=k+1\)
\(\Rightarrow k=-\dfrac{1}{2}\)
25.
\(S=\dfrac{u_1}{1-q}=\dfrac{1}{1-\left(-\dfrac{1}{2}\right)}=\dfrac{2}{3}\)
26.
\(\overrightarrow{AD}=\overrightarrow{B'C'}\) nên \(\overrightarrow{AD}\) cùng hướng với \(\overrightarrow{B'C'}\)
27.
\(cos\left(\overrightarrow{a};\overrightarrow{b}\right)=\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|}\)
\(\Rightarrow\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|.cos\left(\overrightarrow{a};\overrightarrow{b}\right)=3.5.cos120^0=-\dfrac{15}{2}\)
28.
Cả 4 khẳng định này đều sai
Khẳng định đúng: \(\overrightarrow{OA}+\overrightarrow{OC'}=\overrightarrow{0}\)
29.
\(\overrightarrow{MD}+\overrightarrow{MC}=\overrightarrow{0}\) là khẳng định đúng
Câu 31 B
Nếu đường thẳng \(\alpha\) song song với mặt phẳng (P) thì có duy nhất một mặt phẳng chứa và song song với (P).
Bấm số cần phân tích, rồi bấm "="
Sau đó bấm SHIFT+o ' " (là phím phía trên nút ENG)
chịu thôi
Spam, toi báo cáo