K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

Bạn tự vẽ hình nha

a) Xét tứ giác ABCD có

E là trung điểm của AB=> AE = EB

F là trung điểm của CD=> DF = FC

Mà AB = CD ( tứ giác ABCD là hình bình hành )

=>AE = CF (1)

Lại có : AB//CD ( tứ giác ABCD là hình bình hành )

=> AE//CF (2)

Từ (1) và (2) => Tứ giác AECF là hình bình hành.

25 tháng 6 2019

b) Ta có :

EB=DF ; EB//DF => EBDF là hình bình hành => ED//BF

Xét ΔΔ ABK có :

AE=EB

EI//BK

=> AI=IK(3)

Xét ΔDIKΔDIK có:

AF=FC

KF//ID

=>IK =KC (4)

Từ(3) và (4)

=> AI=IK=KC

28 tháng 10 2016

1)

A B C D E F

Ta có:

* AB // CD (ABCD là hình bình hành (gt))

\(\Rightarrow\) AE // FC (1)

* Ta có: E là trung điểm AB (gt)

\(\Rightarrow\) EA = EB

F là trung điểm DC (gt)

\(\Rightarrow\) FD = FC

mà AB = DC

\(\Rightarrow\) AE = FC (2)

Từ (1)(2) \(\Rightarrow\) AECF là bình bình hành (dhnb3)

29 tháng 10 2016

còn câu b thì sao

 

18 tháng 8 2018

A B C D E F i k

18 tháng 8 2018

xem ở những bài trong SBT ý có đấy

18 tháng 8 2018

Bạn tự vẽ hình nhé .

a) Vì tứ giác ABCD là hình bình hành

=> AB // CD ( Tính chất )

   AB = CD ( Tính chất )

Mà \(E\in AB;F\in CD\)

=> AE // CF

Lại có : E , F lần lượt là trung điểm của AB và CD

=> \(AE=EB=\frac{1}{2}AB\)

\(CF=FD=\frac{1}{2}CD\)          

\(\Rightarrow AE=CF\)

Xét tứ giác AECF có :

AE // CF ( cmt )

AE = CF ( cmt )

Vậy tứ giác AECF là hình bình hành ( dhnb )

=> CE // AF ( tính chất )

b) Chứng minh tương tự a  => Tứ giác DEBF là hình bình hành

=> DE // BF ( tính chất )

Gọi H là giao của AF và DE 

Chứng minh giống a) ta được tứ giác AEFD là hình bình hành

=> H là trung điểm của AF ( tính chất )

Xét \(\Delta AFK\)có :

H là trung điểm của AF ( cmt )

HI // FK ( H và I thuộc DE ,  K thuộc FB )

=> HI là đường trung bình của \(\Delta\)AFK

=> I là trung điểm của AK ( Tính chất )

=> AI = IK   (1)

Chứng minh tương tự với tam giác CIE ta được : IK = KC  (2)

Từ (1) và (2)  => AI = IK = KC

15 tháng 12 2022

a: Xét tứ giác DEBF có

BE//DF

BE=DF

Do đó: DEBF là hình bình hành

b: Vì DEBFlà hình bình hành

nên DB cắt EF tại trung điểm của mỗi đường(1)

Vì ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra E,O,F thẳng hàng

c: Để DEBF là hình thoi thì DE=BE=AB/2

Xét ΔDAB có

DE là trung tuyến

DE=AB/2

Do đo:ΔDAB vuông tại D

=>DA vuông góc với DB