Tam giác ABC vuông tại A , lấy điểm D thuộc BC sao cho BD =AB .Qua D ve đường thẳng vuông góc BC cắt AC tại E .Chứng minh
a) BE là tia phân giác của \(\widehat{ABC}\) ( làm cách thứ ba)
b) \(\widehat{ABE}\) = \(\frac{1}{2}\)\(\widehat{CED}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔBAD=ΔBHD(cạnh huyền-góc nhọn)
Suy ra: BA=BH(Hai cạnh tương ứng)
a) Áp dụng định lí Pi - ta - go cho tam giác ABC vuông tại A có :
AB^2+AC^2 =BC^2hay AC^2=15^2-9^2=144 hay AC=12
b)Xét tam giác ABE và DBE có :
Góc A=góc B(=90 độ)
BA=BD(gt)
Chung cạnh BE
suy ra tam giác ABE= BDE (c.g.c)
c) Từ tam giác ABE=BDE(cm ở ý b) suy ra góc ABE = góc DBE (2 góc tương ứng )
Suy ra BE là tia phân giác cua góc ABC
Xét tam giác BDK và BAC có :
Chung góc B
BA=BD(gt)
góc D = góc A (=90 độ)
suy ra tam giác BDK=tam giác BAC (g.c.g)
suy ra AC=DK (2 cạnh tương ứng )
( Mình chỉ làm được ý a,b,c thôi , mình ngại vẽ hình . Nếu đúng kết bạn với mình nhé )
cau 1 :
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
CM: a) Xét t/giác ABE và t/giác DBE
có : AB = BD (gt)
\(\widehat{A}=\widehat{D_1}=90^0\) (gt)
BE : chung
=> t/giác ABE = t/giác DBE (ch - cgv)
=> \(\widehat{B_1}=\widehat{B_2}\) (2 góc t/ứng)
=> BE là tia p/giác của \(\widehat{ABC}\)
b) Xét t/giác ABC có \(\widehat{A}=90^0\) => \(\widehat{B}+\widehat{C}=90^0\)
Xét t/giác DEC có \(\widehat{D_2}=90^0\) => \(\widehat{E_1}+\widehat{C}=90^0\)
=> \(\widehat{B}=\widehat{E_1}\)
mà \(\widehat{B_1}=\widehat{B_2}=\frac{\widehat{B}}{2}\) (cmt)
=> \(\frac{\widehat{E_1}}{2}=\widehat{B_1}\) => \(\widehat{B_1}=\frac{1}{2}\widehat{E_1}\) hay \(\widehat{ABE}=\frac{1}{2}\widehat{CED}\)