Tam giác ABC vuông tại A, đường cao AH. Biết AB = 4cm, CH = 6cm. Khi đó BH = ... cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dùng hệ thức lương trong tam giác vuông ta có:
AB^2=BH.BC=BH.(BH+CH)
16=BH^2+6BH
BH=2cm
a: BC=4+5=9(cm)
\(AB=\sqrt{4\cdot9}=6\left(cm\right)\)
\(AC=\sqrt{5\cdot9}=3\sqrt{5}\left(cm\right)\)
b: \(BH=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(CH=\dfrac{AH^2}{BH}=4,5\left(cm\right)\)
\(AC=\sqrt{6^2+4.5^2}=7,5\left(cm\right)\)
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
Lời giải:
Gọi độ dài $BH=a$ cm ($a>0$)
Áp dụng định lý Pitago cho tam giác vuông $ABH$:
\(AH^2=AB^2-BH^2=4^2-a^2=16-a^2(1)\)
Xét tam giác $ABH$ và $CAH$ có:
\(\widehat{AHB}=\widehat{CHA}(=90^0)\)
\(\widehat{ABH}=\widehat{CAH}(=90^0-\widehat{BAH})\)
\(\Rightarrow \triangle ABH\sim \triangle CAH(g.g)\Rightarrow \frac{AH}{BH}=\frac{CH}{AH}\)
\(\Leftrightarrow AH^2=BH.CH=6a(2)\)
Từ \((1);(2)\Rightarrow 16-a^2=6a\Leftrightarrow (a-2)(a+8)=0\)
\(\Rightarrow BH=a=2\) (cm) do $a>0$)
Hình vẽ: